已知l1平行l2,点A,B在直线l1上,点C,D在直线l2上∠ACD等于30°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 22:07:33
已知l1平行l2,点A,B在直线l1上,点C,D在直线l2上∠ACD等于30°
已知直线l1//l2,且l3和l1、l2分别交于a、b两点,点p在直线ab上

从上往下依次是你所说的∠1(A为顶点)、∠3(P为顶点)、∠2(B为顶点)吧!(1)∠1+∠2=∠3过P作L4平行于L1,则L1//L2//L4L4分∠APB为∠4,∠5两个角(也就是∠4+∠5=∠3

如图,已知直线L1‖L2,且L3和L1、L2分别交与A、B两点,点P在AB上.

(2)不变无论P在AB间哪一点,都可以通过P作平行于l1和l2的直线来证明∠1+∠2=∠3(PS:本来第(1)问中的P就是AB间任取的一点)(3)当P在BA的延长线上时∠1+∠3=∠2当P在AB的延长

高一直线与圆形急!已知圆A的圆心在直线L1:x+y-3=0上,与直线L2:3x+4y-35=0相切于圆周上的点B,且在直

直线L2与L3之间距离为9(9-R)^2=R^2-3^2R=5设圆方程为(x-a)^2+(y-b)^2=5^2...(1)3x+4y-35=0...(2)a+b=3...(3)由(1)、(2)、(3)

如图,已知直线L1平行L2,且L3和L1、L2分别交于A、B两点,点P在直线AB上.

(1)∠1+∠2=∠3;理由:过点P作l1的平行线,∵l1∥l2,∴l1∥l2∥PQ,∴∠1=∠4,∠2=∠5,∵∠4+∠5=∠3,∴∠1+∠2=∠3;(2)同理:∠1+∠2=∠3;(3)同理:∠1-

如图 已知直线l1平行l2,且L3和L1、L2分别交于A、B两点,点P在AB上.

答案:∠2=∠1+∠3证明:从P点作L1、L2的平行线L3,交CD于点O则:∠2=∠CPO+∠DPO∵L1∥L2∥L3∴∠1=∠CPO,∠3=∠DPO∴∠2=∠1+∠3(2)如果点P在A,B两点之间运

如图,已知L1平行L2,MN分别和直线L1L2交于点A、B,ME分别和直线L1L2交于点C、D.点P在MN上(P点与AB

(1)l1,l2平行,所以角ACD+角CDB=180又根据三角形两角之和等于第三角补角α+β+180-γ=180γ=α+β(2)β=α+γ希望对你有帮助

在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2

(1)根据题意知,P(1,2).若点E与点P重合,则k=xy=1×2=2;(2)①当0<k<2时,如图1所示.根据题意知,四边形OAPB是矩形,且BP=1,AP=2.∵点E、F都在反比例函数y=kx(

如图,直线l1的解析表达式为y=1/2x+1,且l1与x轴交与点D,直线l2经过定点A,B,直线l1,l2交于点C,在直

p点坐标是(5,-1),首先根据面积相等判断p点在x轴下方,画出三角形adp,已知A\B两点坐标直线L2的方程式可求出:Y=-X+4,.解L1、L2的二元一次方程求出C点坐标(2,2),利用三角形面积

如图,已知直线l1 // l2 ,l3、l4是截线,且l3于l1、l2分别交于A、B两点,点P在AB上

(1)∠1+∠2=∠3由P点做l5//l1,因为l1//l2,由平行线的传递性可以知道,如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以l2//l5设l5把∠3分成∠4和∠5(∠4在l5

在平面直角坐标系xoy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与l2相交

(1)若点E与点P重合,求k的值;\x0d(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积的2倍,求E点的坐标;(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形

如图,已知直线l1‖l2 ,且l3和l1,l2分别交于A,B两点,点P在AB上,l4和l1,l2分

(1)作PE平行l1,l2所以∠1=∠CPE,∠2=∠EPD因为∠3=∠CPE+∠EPD所以∠3=∠1+∠2(2)不发生变化(3)①当P点在A的上方时,作PF平行l1,l2所以∠1=∠FPC,∠FPD

一道一次函数数学题已知直线L1与直线L2平行,且与直线L2相交于点M(1,4).两直线分别于x轴交于A,B两点(B点在A

是垂直吧,设L1:ax+y+b=0,L2为x-ay+c=0,面积为16,所以ab=8,a(x,0)b(8+x,0)m(1,4)3点带入,解方程组得x=-3a=-1,b=-3,c=-5L1:x-y+3=

如图,已知l1∥l2,MN分别和直线l1、l2交于点A、B,ME分别和直线l1、l2交于点C、D,点P在MN上(P点与A

(1)如图,过点P做AC的平行线PO,∵AC∥PO,∴∠β=∠CPO,又∵AC∥BD,∴PO∥BD,∴∠α=∠DPO,∴∠α+∠β=∠γ.(2)①P在A点左边时,∠α-∠β=∠γ;②P在B点右边时,∠

如图1,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在直线AB上,

(1)∠1+∠2=∠3.∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠1+∠2=∠3.(2)①过A点作AF∥BD,则AF∥BD∥CE,

如图,已知直线L1平行L2,且L3和L1、L2分别交于A、B两点,点P是一个动点

图④:∠1+∠2+∠3=360°,图⑤:∠1=∠2+∠3,图⑥:∠2=∠1+∠3.