已知k是方程x²-3x 1=0(k≠0)的一个根
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:00:57
1、由题可得:k-1≠0则k≠1△=(2k-3)²-4(k-1)(k+1)=4k²-12k+9-4k²+4=-12k+13>0则k<13/12且k≠12、由韦达定理得:x
再答:啧,反了,等等再答: 再答:望采纳
k²+1>0=>两根同号.=>x1+x2=3,-3=>2k-3=3,-3=>k=3,0k=3时,无实根.所以k=0再问:可以详细一点吗?看不太懂....再答:利用二次方程根与系数的关系x1*
1.问题应该是求k的取值范围吧!k-1≠0,k≠1△=(2k-3)^2-4(k-1)(k+1)≥0,解得k≤13/12且k≠12.当两根为相反数,由韦达定理得:x1+x2=k+1=0,k=-1,满足第
经济数学团队为你解答,请及时评价谢谢!
(k-2)^2-4(k^2+3k+5)>=0-4
(k-2)^2-4(k^2+3k+5)>=0-4再问:求x1^2+x2^2的最大值应该取k的最大值-4/3吧,您看看是不是取错了?再问:求x1^2+x2^2的最大值应该取k的最大值-4/3吧,您看看是
1、x1+x2=-(2k-1)=1-2kx1x2=k²x1²+x2²=11所以(x1+x2)²-2x1x2=111-4k+4k²-2k²=1
解:设x^2-(k-2)x+k^2+3k+5=0的两根为a,b,所以判别式=(k-2)^2-4(k^2+3k+5)≥0,即-4≤k≤-4/3,a^2+b^2=(a+b)^2-2ab=(k-2)^2-2
韦达定理(2k-1)=3kk=-1再问:谢谢,那么过程呢???我还有5分,谢谢再答:韦达定理x1+x2=(2k-1)/kx1x2=(k-2)/kx1^2+x2^2=(x1+x2)^2-2x1x2=[(
由方程有实根,得△≥0,即(k-2)2-4(k2+3k+5)≥0所以3k2+16k+16≤0,所以(3k+4)(k+4)≤0解得-4≤k≤-43.又由x1+x2=k-2,x1•x2=k2+3k+5,得
1.已知x1,y2是关于x方程x²-6x+K=0的两个实数根,且x1²x2²-x1-x2=15(1)求k的值;判别36-4k>=0,ka+c,则一元二次方程ax^2+bx
x^2-(3k+1)x+2k(k+1)=0(x-2k)(x-k-1)=0x1=2k,x2=k+1或x1=k+1,x2=2k(1)2k+3(k+1)=8k=1(2)k+1+6k=8k=1∴k的值1
y=X1-X2=±√(x1-x2)²=±√[(x1+x2)²-4x1x2]=±(2k-1)/k(∵方程有两个实数根,∴K不为O)∴Y=2-1/K或Y=1/K-2∴y是变量k的函数
判别式(k-2)^2-4(k^2+3k+5)>=0-4
题目应该是x^2-(k-2)x+(k^2+3k+5)=0(k是实数)吧△=(k-2)^2-4(k^2+3k+5)=k^2-4k+4-4k^2-12k-20=-3k^2-16k-16≥03k^2+16k
已知x1是方程的解,则2x1²-2x1-5=0===>x1²-x1=5/2=2.5又,x1,x2是方程的两个解,则:x1+x2=1,x1x2=-5/2x1³+3x1
差点就做不下去了不过还是发现了好方法由韦达定理,x1+x2=-b/a=3则2x1+2x2=6所以2x1+5x2=6+3x2=3那么x2=-1结合上面的韦达定理,x1=4以x1=-1,x2=4为两根的方
由方程有实根,得△≥0,即(k-2)2-4(k2+3k+5)≥0⇒3k2+16k+16≤0⇒(3k+4)(k+4)≤0⇒-4≤k≤-43.又由x1+x2=k-2,x1•x2=k2+3k+5,得x12+
x1/x2+x2/x1=(x1^2+x2^2)/x1x2=[(x1+x2)^2-2x1x2]/x1x2韦达定理的x1+x2=k-2,x1x2=k-2带进去x1/x2+x2/x1=(x1^2+x2^2)