已知g是三角形abc的重心,P是平面abc内任意一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:53:24
=0重心是三边中线的交点,延长GA交BC于O,再延长至P,得OP=GO根据中线的性质,GA=2GO,得GA=GP连接BP,CP得BOCP是平行四边形得题中等式=0
要用到解析几何的定比分点公式和中位线定理,具体如下设A(x1,y1),B(x2,y2),C(x3,y3),则AB中点D为((x1+x2)/2,(y1+y2)/2),重心O分有向线段CD的比例为2,由定
设:AB边上的高为CE,中线为CD,则CG=2CD/3;CD=AB/2=5/2∴CG=2/3(5/2)=5/3设G到斜边AB的距离为GF在ΔCDE中:GF/CE=DG/DC===>GF=DG*CE/D
四边形PABC是空间四边形作AB、BC的重点M、N连接PM、PN(过D、E)易得DE平行且相等于2/3MNMN平行且相等于1/2AC所以DE平行且相等于1/3AC
G为三三角形的重心,则AG=(1/3)AB+(1/3)AC.①.由于P、G、Q三点一直线,所以GP=mGQ,而GP=AP-AG=(3/4)AB-AG,GQ=AQ-AG=λAC-AG,代入,有:(3/4
不知有没有回答迟了,因为p、Q分别是三角形ABC和三角形ACD的重心,所以分别连接BP,CQ,由重心定义可知BP,CQ的沿长线与AC交于一点(假设为E)在△DBC中PQ为中位线.所以知PQ//BC,所
要解这个题目,首先要知道,由平面向量基本定理可推出:当向量a和b不共线时,若实数λ和μ满足λ*a+μ*b=0向量,则λ=μ=0.此题:设向量AB、AC分别为a、b,则AP=λ*a,AQ=μ*b,延长A
设H1,H2,H3分别为PG1,PG2,PG3交于AB,BC,AC的点,则G1G2//H1H2,G2G3//H2H3.所以,G1G2//面ABC,G2G3//面ABC.又,G1G2与G2G3相交,故面
解:点G为三角形ABC的重心,则DG/GA=1/2,DG/DA=1/3.GE平行AB,则⊿DGE∽⊿DAB.则S⊿DGE/S⊿DAB=(DG/DA)²=1/9,S⊿DAB=9S⊿DGE=18
因为G是重心所以AD平分BC所以BD=DC因为GE//AB,所以角ABD=角GED又角ADB=角GDE所以三角形ADB相似三角形GDE所以|GD|/|AD|=|ED|/|BD|同理|GD|/|AD|=
因为AB=5,BC=6,所以AD=4,设AO=r,在直角三角形BDO中,由勾股定理,得,r^2=(4-r)^2+3^2解得,r=25/8,因为G是重心所以AG=2AD/3=8/3所以OG=AO-AG=
解∵AB=5,BC=6,∴BD=3∴AD=4,设AO=R,在直角△BDO中,由勾股定理,得,R^2=(4-R)^2+3^2解得,R=25/8,因为G是重心∴AG=2AD/3=8/3∴OG=AO-AG=
重心和三角形各个顶点的连线,把三角形的面积分成相等的三部分所以三角形BCG的面积=3cm^2
可以用向量解.理论上可以用向量法解任何几何题.向量法和解析法是一样的.这个题目用几何性质解起来更方便.连接AG并延长交BC于E,则AG=2GE,且BE=CE.则S△GDP:S△ABC=(S△GDP:S
因为向量BC=向量AC-向量AB,向量AG=1/3(向量AB+向量AC),所以向量BC*向量AG=1/3(|AC|²-|AB|²)=1/3(13²-5²)=14
连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF
答案等于三分之二根号三