已知g是三角形abc的重心,P是平面abc内任意一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:53:24
已知g是三角形abc的重心,P是平面abc内任意一点
已知点G是三角形ABC的重心,则向量GA+向量GB+向量GC=

=0重心是三边中线的交点,延长GA交BC于O,再延长至P,得OP=GO根据中线的性质,GA=2GO,得GA=GP连接BP,CP得BOCP是平行四边形得题中等式=0

已知三角形ABC顶点的坐标分别为A(a1,a2),B(b1,b2),若G(x,y)是三角形ABC的重心,证明x=(a1+

要用到解析几何的定比分点公式和中位线定理,具体如下设A(x1,y1),B(x2,y2),C(x3,y3),则AB中点D为((x1+x2)/2,(y1+y2)/2),重心O分有向线段CD的比例为2,由定

已知:Rt三角形ABC,角ACB=90度,AC=4,BC=3,G是三角形ABC的重心.

设:AB边上的高为CE,中线为CD,则CG=2CD/3;CD=AB/2=5/2∴CG=2/3(5/2)=5/3设G到斜边AB的距离为GF在ΔCDE中:GF/CE=DG/DC===>GF=DG*CE/D

已知P是三角形ABC所在平面外一点,D.E分别是三角形PAB.三角形PBC的重心.

四边形PABC是空间四边形作AB、BC的重点M、N连接PM、PN(过D、E)易得DE平行且相等于2/3MNMN平行且相等于1/2AC所以DE平行且相等于1/3AC

如图,G是三角形ABC的重心,P,Q分别在AB,AC上,已知向量AP=3/4向量AB,直线PQ过点G,设向量AQ=λ向量

G为三三角形的重心,则AG=(1/3)AB+(1/3)AC.①.由于P、G、Q三点一直线,所以GP=mGQ,而GP=AP-AG=(3/4)AB-AG,GQ=AQ-AG=λAC-AG,代入,有:(3/4

已知空间四边形ABCD,p、Q分别是三角形ABC和三角形ACD的重心.求证pQ//平面BCD

不知有没有回答迟了,因为p、Q分别是三角形ABC和三角形ACD的重心,所以分别连接BP,CQ,由重心定义可知BP,CQ的沿长线与AC交于一点(假设为E)在△DBC中PQ为中位线.所以知PQ//BC,所

设G为三角形ABC的重心,过点G作直线分别交AB、AC于P、Q,已知向量AP=λ向量AB,

要解这个题目,首先要知道,由平面向量基本定理可推出:当向量a和b不共线时,若实数λ和μ满足λ*a+μ*b=0向量,则λ=μ=0.此题:设向量AB、AC分别为a、b,则AP=λ*a,AQ=μ*b,延长A

已知P为三角形ABC所在平面外一点,G1、G2、G3、分别是三角形PAB,三角形PCB,三角形PAC的重心,求证:平面G

设H1,H2,H3分别为PG1,PG2,PG3交于AB,BC,AC的点,则G1G2//H1H2,G2G3//H2H3.所以,G1G2//面ABC,G2G3//面ABC.又,G1G2与G2G3相交,故面

AD是三角形ABC的中线,G是重心,GE∥AB,已知S三角形GDE=2求S三角形ABC

解:点G为三角形ABC的重心,则DG/GA=1/2,DG/DA=1/3.GE平行AB,则⊿DGE∽⊿DAB.则S⊿DGE/S⊿DAB=(DG/DA)²=1/9,S⊿DAB=9S⊿DGE=18

已知,如图,点G是三角形ABC的重心,GE平行于AB,GF平行于AC.

因为G是重心所以AD平分BC所以BD=DC因为GE//AB,所以角ABD=角GED又角ADB=角GDE所以三角形ADB相似三角形GDE所以|GD|/|AD|=|ED|/|BD|同理|GD|/|AD|=

已知三角形ABC,AB=AC=5,BC=6,O是三角形ABC的外心,G是三角形的重心,求OG的长

因为AB=5,BC=6,所以AD=4,设AO=r,在直角三角形BDO中,由勾股定理,得,r^2=(4-r)^2+3^2解得,r=25/8,因为G是重心所以AG=2AD/3=8/3所以OG=AO-AG=

急.已知三角形ABC,AB=AC=5,BC=6,O是三角形ABC的外心,G是三角形的重心,求AO、OG的长

解∵AB=5,BC=6,∴BD=3∴AD=4,设AO=R,在直角△BDO中,由勾股定理,得,R^2=(4-R)^2+3^2解得,R=25/8,因为G是重心∴AG=2AD/3=8/3∴OG=AO-AG=

已知点G是三角形ABC的重心,三角形ABC的面积为9cm2,那么三角形BCG的面积为

重心和三角形各个顶点的连线,把三角形的面积分成相等的三部分所以三角形BCG的面积=3cm^2

已知三角形ABC中D是BC上一点,切向量CD=2DB,P是AD中点G是三角形ABC重心,求S△GDP:S△abc .能用

可以用向量解.理论上可以用向量法解任何几何题.向量法和解析法是一样的.这个题目用几何性质解起来更方便.连接AG并延长交BC于E,则AG=2GE,且BE=CE.则S△GDP:S△ABC=(S△GDP:S

已知g是三角形abc的重心,ab=13,ac=5,求bc向量点乘ag向量

因为向量BC=向量AC-向量AB,向量AG=1/3(向量AB+向量AC),所以向量BC*向量AG=1/3(|AC|²-|AB|²)=1/3(13²-5²)=14

已知点g是三角形abc的重心,D,E过点G且DE平行BC求S三角形ade:S三角形abc的值

连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF