已知g为三角形abc的外心,c=2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:15:46
向量OH=向量OA+向量+OB+向量OC向量OG=(向量OA+向量OB+向量OC)/3,向量OG*3=向量OH所以O、G、H三点共线
∠BOC=180-(180-∠A)÷2=180-(180-60)÷2=180-60=120度
设BC中点为P,则OP⊥BC,向量AO=AP+POAO*BC=(AP+PO)*BC=AP*BC+PO*BC=AP*BC=1/2*(AB+AC)(AC-AB)=1/2*(|AC|^2-|AB|^2)=1
易知外心是三角形外接圆圆心,很容易看出大角所对圆弧大于半圆弧,则大角大于半圆弧所对圆周角90
已知点O为三角形ABC的外心,角A等于60度,则角BOC的度数是120°(圆心角是圆周角的2倍)
设D为BC中点,则AD=(AB+AC)/2点O为△ABC的外心,故OB=OC,又OD为等腰△OBC中线,故OD与BC垂直,向量OD•BC=0于是AO•BC=(AD+DO)
(1)因为O是外心,所以OA,OB,OC的长度都相等,设为x.设AO的延长线交BC于D,则4x*sin角BOD=5x*sin角COD4x*cos角BOD+5x*cos角COD=3x联立解得cos角CO
因为,同弧所对的圆心角等于圆周角的2倍,而且,∠BAC是弧BC所对的圆周角,∠BOC是弧BC所对的圆心角,所以,∠BOC=2∠BAC;已知,∠BAC=80°,(三角形任一内角都小于180°,故题中角A
过O作OD⊥BC,则D为BC中点,OD=5,BD=BC/2=12 ∴根据勾股定理:BO²=OD²+BD²=25+144=16
因为AB=5,BC=6,所以AD=4,设AO=r,在直角三角形BDO中,由勾股定理,得,r^2=(4-r)^2+3^2解得,r=25/8,因为G是重心所以AG=2AD/3=8/3所以OG=AO-AG=
解∵AB=5,BC=6,∴BD=3∴AD=4,设AO=R,在直角△BDO中,由勾股定理,得,R^2=(4-R)^2+3^2解得,R=25/8,因为G是重心∴AG=2AD/3=8/3∴OG=AO-AG=
百度百科“三角形的四心”,有详尽的相关证明
140度,在三角形中,由于外接圆O的圆心为O点,角BAC为圆周角,在同一个圆中,同弧对应的圆周角是圆心角的一半.
设AB中点为D,AC中点为E过B做AO延长线的垂线,交于B'过C做AO延长线的垂线,交于C'∵AO=xAB+yAC∴|AO|=x|AB'|+y|AC'|(用这一条)0=x|BB'|+y|CC'|(这一
(1)设C(x,y),G(x/3,y/3),则M(x/3,0)由题意,CM=AM故(2x/3)^2+y^2=1^2+(x/3)^2即C:x^2/3+y^2=1(2)设P(x1,y1),Q(x2,y2)
距离为5因为AC=6,BC=8,所以AB=10因为直角三角形的外心,就是斜边的中点,而斜边的中点到C的距离就是中线长度,即AB的一半=10/2=5.