已知F是双曲线x2 4-y2 12=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:20:34
由题意可知,a=13,c=5,e=51313,点P到左焦点的距离=213-13=13,设点P到右准线的距离是x,由双曲线的第二定义可知13x=51313,解得x=135;故选A.
由点P到双曲线右焦点(6,0)的距离是2知P在双曲线右支上.又由双曲线的第二定义知点P到双曲线右准线的距离是263,双曲线的右准线方程是x=263,故点P到y轴的距离是463.故选A.
依题意可知a2=4,b2=12所以c2=16F1F2=2c=8令PF1=p,PF2=q由双曲线定义:|p-q|=2a=4平方得:p2-2pq+q2=16∠F1PF2=90°,由勾股定理得:p2+q2=
设双曲线方程为x2a2-y2b2=1.将y=x-1代入x2a2-y2b2=1,整理得(b2-a2)x2+2a2x-a2-a2b2=0.由韦达定理得x1+x2=2a2a2−b2,则x1+x22=a2a2
设A(x1,y1)、B(x2,y2),直线AB的方程为y=k(x-4),由y=k(x-4)x24-y212=1消去y,得(3-k2)x2+8k2x-16k2-12=0.∴x1+x2=-8k23-k2,
由题意知双曲线的焦点在x轴上.椭圆的一个焦点为(1,0),椭圆实轴上的一个顶点为(2,0),所以设双曲线方程为x2a2-y2b2=1,则a=1,c=2,所以双曲线的离心率为e=ca=2.故选C.再问:
根据题意,双曲线x22−y22=1中,c2=2+2=4,则c=2,易得准线方程是x=±a2c=±1所以c2=a2-b2=4-b2=1即b2=3所以方程是x24+y23=1联立y=kx+2可得(3+4k
设点P到它的左焦点的距离是m,则由双曲线的定义可得|m-8|=2×2∴m=4或12故选C.
依题意知,双曲线的焦点在x轴,|F1F2|=2c=25,由双曲线的定义得:||PF1|-|PF2||=2a,∴|PF1|2-2|PF1|•|PF2|+|PF2|2=4a2,①∵PF1⊥PF2,|PF1
依题意可知a2+b2=p249a2p2-4b2p2=1,两式相减求得8b2=5a2,∴ba=58=104∴双曲线的渐近线方程为y=±bax=±104x故答案为:y=±104x
设点M的横坐标是m,由双曲线的标准方程得a=2,b=23,c=4,a2c=1,再由双曲线的定义得 3m-a2c=e,∴3m-1=2,m=52,故答案为 52.
由题得:其焦点坐标为(±4,0).渐近线方程为y=±3x所以焦点到其渐近线的距离d=433+1=23.故选:D.
设|PF1|=3x,|PF2|=2x,则3x-2x=2a=2,解得x=2.∴△PF1F2的三边长分别为6,4,213.∵62+42=(213)2,∴∠F1PF2=90°.∴△PF1F2的面积=12×6
点F(5,0),离心率e=54,设M到右准线的距离等于MN,则由双曲线的定义可得 4MF-5MA=4•54MN-5MA=5(MN-MA),故当M,A,N三点共线时,5(MN-MA)最大,最大
∵F是双曲线x24-y212=1的左焦点,∴a=2,b=23,c=4,F(-4,0),右焦点为H(4,0),由双曲线的定义可得|PF|+|PA|=2a+|PH|+|PA|≥2a+|AH|=4+(4−1
∵双曲线x24−y212=1的焦点坐标F1(-4,0),F2(4,0),∴椭圆的焦点坐标F1(-4,0),F2(4,0),∵椭圆上任意一点到两焦点的距离之和为10,∴2a=10,a=5,∴椭圆的离心率
∵双曲线C:x24−y2=1∴双曲线的渐近线方程为:y=±12x如果l与双曲线的左、右两支都相交,则它的斜率要夹在两条渐近线之间∴−12<k<12故选C
双曲线x24−y212=−1的顶点为(0,-23)和(0,23),焦点为(0,-4)和(0,4).∴椭圆的焦点坐标是为(0,-23)和(0,23),顶点为(0,-4)和(0,4).∴椭圆方程为x24+
P是双曲线x24−y212=1右分支上任意一点,F1,F2分别为左、右焦点,∴a=2,b=23,c=4,F1(-4,0),F2(4,0),设△PF1F2的内切圆圆心为M,内切圆与x轴的切点为N,半径为
赞一个再答:4/5再问:过程再答:再答:赞我一个谢了再答:可收到了再问:yes,赞