已知FX=X方 2E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 11:10:05
求导f·x=e的x次方+2x-3令导函数=0不好解令gx=的x次方+2xhx=-3显然,一个是增函数,一个是常函数且只有一个交点,但是不在(0,1)范围内因为g0=1>-3所以在范围内没有极值点
证明:当x=0时,f(x)=1-1=0,从而f(-x)*f(x)=0; 当x0时,f(-x)=e^(-x)-1/e^x=e^(-x)-e^(-x)=0,从而f(-x)*f(x)=0*f(x)=0;
1先对f(x)求导,它在(1,e)上递增2构造一个函数F(x)=g(x)-f(x),再对F(x)求导,可得到F(x)在区间内递增,即只需证明F(1)>0即可
因为是奇函数有f(-x)=-f(x)当x小于等于0的时候-x就大于等于0f(-x)=-f(x)=(-x)^2+2(-x)=x^2-2x所以在r上的表达式为:f(x)=-x^2-2x(x≤0)=x^2-
f(2)=2^2+2-1=5f(a)=a^2+a-1满意请采纳O(∩_∩)O谢谢满意请采纳
g(x)=x³-3x²-9x+3-mg'(x)=3x²-6x-9=3(x-3)(x+1),得极值点x=3,-1g(3)=-24-m为极小值;g(-1)=8-m为极大值端点
先确定x>0时函数解析式:令x>0,则-x
f(x)=2√3sinxcosx+2sin^2x-1=√3sin2x-cos2x=2sin(2x-π/6)最小正周期T=π,单调递增区间:2kπ-π/2
因为f(x)=ax²-e^x所以f′(x)=2ax-e^x(1)当a=1时,f′(x)=2x-e^x所以f″(x)=2-e^x当x>ln2时,f″(x)0时令f′(x)=2ax-e^x=0得
再问:...好像不太对
f'(x)=1*e^x+(x-k)*e^x=(x-k+1)*e^x显然e^x>0所以看x-k+1的符号f'(x)>0递增,f'(x)
x小于等于02x^2+1-x≤22x^2-x-1≤0(x-1)(2x+1)≤0-1/2≤x≤1综上-1/2≤x≤0x大于0-2x-x≤23x≥-2x≥-3/2综上x>0综上x≥-1/2
令F(x)=e^x(x-k)^2-4e;求导知F(x)从(-∞,k-2]单调增,[k-2,k单调减],[k,∞)单调增,且F(k)<0;当F(k-2)>0时则会出现三个根,当F(k-2)&
f(x)=x^3+2x^2+x>=ax^2=>x^3+(2-a)x^2+x>=0对于R+恒成立因为x>0,所以只要g(x)=x^2+(2-a)x+1>=0对于R+恒成立抛物线g(x)当x>0的时候g(
f(-a)=3(-a)^2-5(-a)+2=3a^2+5a+2
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
再问:上面的很好,我这个对吗?再答:你这个利用导数表示斜率,利用图像性质分析可以,但是具体考试的时候,答卷上不让画图的,当然如果你不嫌做题时间太长也可以这样利用斜率描述性质;这道题目是反证法的应用;反
f'(x)=1-a/x令f'(x)=0则x=a1.当a
F(x)=x^2e^(ax)求导得:f’(x)=e^(ax)+ax²e^(ax)=e^(ax)(ax²+2x)e^(ax)恒大于0①a>0时,ax²+2x>0,解得x>0
求导数e^ax(ax2+2x)e^ax恒大于0,所以只要讨论ax2+2x即可x(ax+2)当a大于0时,递增区间就是x小于-2/a或者x大于0当a等于0时,x大于0递增当a小于0时,递增区间是x大于0