已知F1F2是双曲线的左右焦点,F2关于直线y=b a的对称点M也在双曲线上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 11:07:30
已知F1F2是双曲线的左右焦点,F2关于直线y=b a的对称点M也在双曲线上
双曲线x2a2−y2b2=1的左右焦点为F1,F2,P是双曲线上一点,满足|PF2|=|F1F2|,直线PF1与圆x2+

设PF1与圆相切于点M,过F2做F2H垂直于PF1于H,则H为PF1的中点,∵|PF2|=|F1F2|,∴△PF1F2为等腰三角形,∴|F1M| =14| PF1|,∵直角三角形F

已知双曲线的左右焦点分别为F1F2离心率为3直线y=2与双曲线的两个交点间的距离为根号6

1)e=c/a=3b^2/a^2=8代入双曲线中8x^2-y^2=8a^2线y=2与C的两个焦点间距离为√6y=2代入双曲线中8x^2-y^2=8a^2x=±√(a^2+1/2)两个焦点间距离=2√(

已知双曲线x^2/9-y^2/16=1的左右焦点分别为f1f2,若双曲线上一点p,使角f1pf2=90,则三角形f1pf

a²=9,b²=16所以c²=9+16=25c=5则F1F2=2c=10令PF1=p,PF2=q由双曲线定义|p-q|=2a=6平方p²-2pq+q²

已知双曲线x2/4-y2/b2=1的两个焦点F1F2,P是双曲线上的一点,且满足PF1*PF2=F1F2

设F1、F2坐标为(-c,0),(c,0),|F1F2|=2c焦点在x轴上,a=2,c^2=4+b^2,设|PF2|=x,根据双曲线“动点与两个定点距离之差的绝对值为定值2a”的基本性质得:||PF1

已知F1,F2分别为双曲线X2/A2-Y2/B2=1的左右焦点若在双曲线右支上有一点P,满足|PF2|=|F1F2|,且

画一个图形,设PF1与圆相切于点M因为|PF2|=|F1F2|所以三角形PF1F2为等腰三角形|F1M|=(1/4)|PF1|又因为在直角三角形F1MO中|F1M|^2=|F1O|^2-a^2=c^2

已知F1F2分别是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点,P为双曲线上的一点,

设|PF1|=m,|PF2|=n,设P在第一象限,m-n=2a,m2+n2=(2c)2,n+2c=2m∴5a2-6ac+c2=0,e2-6e+5=0,e=5或e=1(舍去),∴e=5

已知F1F2分别是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)左右焦点,

∵F1是左焦点∴F1A>F2A∴∠F1AF2一定是锐角∵AB⊥x轴∴F2A=F2B∠F1AF2=∠F1BF2∵三角形ABF2是锐角三角形∴只需∠AF2B是锐角∵∠AF2F1=∠BF2F1=1/2

已知f1f2是椭圆x2/a2+y2/b2=1(a>b>0)的左右焦点,

0.5=e=c/aa=2c△PF[1]F[2]周长是2a+2c内切圆半径是rr(a+c)=△PF[1]F[2]面积

已知F1,F2分别是双曲线的左右焦点以F1F2为直径的圆与双曲线在第2象限的交点为P,若双曲线的离心率为5,则COS∠P

PF1F2是直角三角形e=c/a=5c=5a而由双曲线的定义可知:PF1-PF2=2a(1)F1F2=2c=10a(2)又在直角三角形中,PF1^2+PF2^2=F1F2^2(3)由上面三式,解得PF

求大师帮忙.F1F2是双曲线的左右焦点,过F1的直线与左右两只分别交于AB两点.|AB|:|BF2|

设AB=3BF2=4AF2=5AB^2+BF2^2=AF2^2则角ABF2=90°BF1-BF2=2aAF2-AF1=2a所以AF1+3-4=5-AF1AF1=32a=BF1-BF2=3+3-4=2a

已知F1F2分别是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点,过f1且垂直于x轴与双曲线交于A

∠AF2B>90所以∠AF2F1>45即∠所以AF2F1>∠F2AF1因为大边对大角(正弦定理)所以AF1>F1F2AF1=b²/aF1F2=2c解得e>√2+1

已知双曲线C:X2/9-y2/16的左右焦点分别为F1,F2,P为C的右支上一点,且 |PF1|=|F1F2| 则三角形

a=3,b=4,c=sqrt(a^2+b^2)=5.则F1(-5,0),F2(5,0).设P(s,t),s>=3:s^2/9-t^2/16=1.|PF1|=|F1F2|:sqrt[(s+5)^2+t^

已知双曲线C:x29−y216=1的左右焦点分别为F1,F2,P为C的右支上一点,且|PF2|=|F1F2|,则△PF1

∵双曲线C:x29−y216=1中a=3,b=4,c=5,∴F1(-5,0),F2(5,0)∵|PF2|=|F1F2|,∴|PF1|=2a+|PF2|=6+10=16作PF1边上的高AF2,则AF1=

已知双曲线x²/64-y²/36=1的左右焦点为F1F2 ,直线l过F1,交双曲线的左支于AB两点,

a=8,b=6,c^2=64+36=100,c=10|AF2|-|AF1|=2a=16|BF2|-|BF1|=2a=16|AF2|+|BF2|-(|AF1|+|BF1|)=4a=32|AF1|+|BF

已知F1F2是双曲线x2/a2-y2/b2=1(a>0,b>0)的左右焦点,过点F1且垂直于实轴的直线与双曲线的两条渐近

因为MF2垂直与x轴,所以MF2是半个通径的长度,双曲线的通径长是2b^2/a,所以MF2=b^2/a.在直角三角形F1F2M中,tan30°=MF2/F1F2,所以(b^2/a)/2c=根号3/3.

已知P是双曲线x^2/4-y^2/b^2 上一点,F1、F2是左右焦点,⊿P F1F2的三边长成等差数列,且∠F1 P

∠F1PF2=120°,F1F2最长,PF1-PF2=2a=42c+PF2=2PF1===>PF1=2c-4,PF2=2c-8PF1^2+PF2^2-2PF1PF2cos120°=F1F2^2PF1=

|已知双曲线x2/a2-y2/b2=1的左右焦点分别是F1F2,P为右支上任意一点,当|PF1|2/|PF2|取最小值,

由a^2+b^2=c^2得,c=5所以|PF2|=|F1F2|=5*2=10,再由双曲线定义得:|PF1|-|PF2|=2a=6,所以|PF1|=16,所以三角形PF1F2是等腰三角

已知椭圆X的平方/4+Y的平方与双曲线x的平方—y的平方/2=1的一个交点,F1F2是椭圆的左右焦点,则求COS角FPF

椭圆方程:x^2/4+y^2=1,a1=2,b1=1,c1=√3,F1(-√3,0),F2(√3,0);双曲线方程:x^2-y^2/2=1,a2=1,b2=√2,c2=√3,F1(-√3,0),F2(

已知双曲线的左右焦点分别为F1F2,离心率为根号2,且过点(4,-10),求双曲线方程

c/a=根号2∴c²=2a²,即:a²+b²=2a²∴a=b设双曲线方程是:x²/a²-y²/a²=1,代人点