已知F1F2是双曲线x平方 9-y平方 16=1的两个焦点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 10:58:49
已知F1F2是双曲线x平方 9-y平方 16=1的两个焦点
已知F1F2为双曲线与椭圆x的平方+4y的平方=4的公共焦点 左焦点到双曲线的渐近线距离为根号2 求双曲线方程

椭圆方程即:x^2/4+y^2=1,焦点为(±√3,0)可知双曲线焦点在x轴上,且c=√3设双曲线方程为:x^2/a^2-y^2/b^2=1,则渐近线方程为y=±b/ax取其中一条渐近线方程为:bx+

设F1F2是双曲线X方/4减Y方的焦点,点P在双曲线上,且

双曲线X方/4减Y方=1a^2=4b^2=1c^2=a^2+b^2=5设PF1=mPF2=n双曲线定义|m-n|=2a=4且

2道双曲线的题1.已知F1F2 是双曲线X^2/9-Y^2/16=1的两个焦点,P在双曲线上且满足PF1×PF2=32

1.c=5,F1F2=10,设PF1=x,F2=y,则x-y的绝对值为6,xy=32,可以X的平方+y的平方=100,根据勾股定理的逆定理知,角F1PF2=90度2.设PF1=x,F2=y,则x-y的

已知双曲线x^2/9-y^2/16=1的左右焦点分别为f1f2,若双曲线上一点p,使角f1pf2=90,则三角形f1pf

a²=9,b²=16所以c²=9+16=25c=5则F1F2=2c=10令PF1=p,PF2=q由双曲线定义|p-q|=2a=6平方p²-2pq+q²

已知双曲线x2/4-y2/b2=1的两个焦点F1F2,P是双曲线上的一点,且满足PF1*PF2=F1F2

设F1、F2坐标为(-c,0),(c,0),|F1F2|=2c焦点在x轴上,a=2,c^2=4+b^2,设|PF2|=x,根据双曲线“动点与两个定点距离之差的绝对值为定值2a”的基本性质得:||PF1

已知p为双曲线x的平方除以十二减y的平方除以4等于一上的一点 F1F2为双曲线的左右焦点,且角F1PF2等于120度 求

先用余弦定理有PF1和PF2的关系式这为关系式一,还有PF1减去PF2差的绝对值等于2a,这为关系式二,联立一二可解得PF1和PF2的长或者你直接求他们的相乘,然后面积就等于二分之一乘以这个积再乘以一

已知F1、F2是双曲线x的平方除以a的平方减y的平方除以b的平方等于1(a大于0,b大于0)的两焦点,以线段F1F2为边

首先M点必然在y轴上,这个不用解释了吧.点O,点F1和点M构成直角三角形,且斜边MF1=2c,OF1=c,则OM=根3.故OM=跟3c或负根3c.即M的坐标为(0,根3c)或(0,负根3c),则MF1

已知双曲线x2/4+y2/b2=1,两焦点是F1F2,点p在双曲线上,|PF1|,|F1F2|,|PF2|成等比数列,且

设PF1=m,PF2=n,由题意得,C=√b^2+4∴|F1F2|=2√b^2+4又,PF1,F1F2,PF2成等比数列∴|F1F2|^2=PF1*PF2即m*n=|F1F2|^2=4(b^2+4)①

已知F1F2分别是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点,P为双曲线上的一点,

设|PF1|=m,|PF2|=n,设P在第一象限,m-n=2a,m2+n2=(2c)2,n+2c=2m∴5a2-6ac+c2=0,e2-6e+5=0,e=5或e=1(舍去),∴e=5

已知F1F2分别是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)左右焦点,

∵F1是左焦点∴F1A>F2A∴∠F1AF2一定是锐角∵AB⊥x轴∴F2A=F2B∠F1AF2=∠F1BF2∵三角形ABF2是锐角三角形∴只需∠AF2B是锐角∵∠AF2F1=∠BF2F1=1/2

已知点F1,F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,以线段F1F2为边作

设MF1与双曲线的交点为P,因为P是正三角形边上的中点,根据三线合一有PF2为MF1边上的高,因为F1F2的长为2c,所以PF1的长为c,PF2的长为根3倍c,根据双曲线的定义,有PF2-PF1=2a

已知双曲线64分之X平方减36分之Y平方等于1,焦点为F1F2,PF1垂直F2求三角形F1PF2面积

OF1²=6²+8²=10².|F1F2|=20.x=10时.y=36/8.(P∈双曲线,打漏)S⊿F1PF2=20×(36/8)/2=360/8=45(面积单

已知F1,F2是双曲线x^2/a^2-y^2/b^2(a>0,b>0)的两个焦点,以线段F1F2为边作正三角形MF1F2

解;设MF2中点为N(F1为左焦点,F2为右焦点)因为三角形MF1F2为正三角形,所以NF2垂直于MF2,由勾股定理,NF1^2+NF2^2=F1F2^2,且由双曲线几何定义,NF1-NF2=2a,又

已知双曲线x平方-2Y平方=2的左右焦点F1F2,动点P满足PF1绝对值+PF2绝对值=4.求动点P的轨迹E的方程

双曲线的方程为:x²+2y²=2,整理后为:x²/2+y²=1所以,a=√2,b=1所以,根据双曲线的性质可知:c²=a²+b²=

已知双曲线x的平方/6-y的平方/3=1的焦点为F1F2,点M在双曲线上且MF1垂直于x轴,则F1到直线F2M的距离为

喔..我知道哪里错了~现在改了~看看叭~a^2=6,b^2=3,c=3.MF1=二分之根号六.MF2-MF1=2a=二根号六.所以MF2=二分之五根号六.又F1F2=2c=6.F1F2*MF1=MF2

双曲线16X平方-9Y平方=144的焦点为F1F2点P在双曲线上,且PF1绝对值乘以PF2绝对值=64,求三角形F1PF

设pf1=a,pf2=b,f1f2=2A=2*5=10ab=64,(a-b)^2=9^2=81=a^2+b^2-2ab余弦公式有cos(f1pf2)=(a^2+b^2-f1f2^2)/2aba^2+b

已知椭圆X的平方/4+Y的平方与双曲线x的平方—y的平方/2=1的一个交点,F1F2是椭圆的左右焦点,则求COS角FPF

椭圆方程:x^2/4+y^2=1,a1=2,b1=1,c1=√3,F1(-√3,0),F2(√3,0);双曲线方程:x^2-y^2/2=1,a2=1,b2=√2,c2=√3,F1(-√3,0),F2(