已知f(x)=x^3-3ax^2 2bx在x=1有极小值-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:54:06
已知f(x)=x^3-3ax^2 2bx在x=1有极小值-1
已知函数f(x)=ax^3 3x^2-6ax-11,g(x)3x^2 6x

f'(x)=3ax^2+6x-6a而f'(1)=03a+6-6a=0a=2

已知函数f(x)=x^3+3ax-1的导函数为f'(x),g(x)=f'(x)-ax-3

f'(x)=3x^2+3ag(x)=3x^2-ax-3+3a对满足-1≤a≤1的一切的值,都有g(x)

已知函数f(x)=x^3+3ax-1的导函数为f '(x),又g(x)=f '(x)-ax-3

g(x)=3x^2+3a-ax-3若以a为变量,则g(a)是关于a的一次函数.故要使对于满足-1≤a≤1的一切a,都有g(x)再问:第一步不太懂再答:x(6x-a)+lnx=6x^2-6ax+lnx>

已知函数f(x)=lnx+ax^2-3x

分析:极值点导数为零,但是导数为零的点不一定是极值点;如果1/2左右两侧导函数值都为负,即都单调递减,那么它不是极值点一般判定极值点还是按照课本上列表进行判定,只有两侧单调性相反的才是极值点,否则不是

已知函数f(x)=3x+ax+2

解法一:∵函数f(x)=3x+ax+2在区间(-2,+∞)上单调递减,∴f′(x)=6−a(x+2)2 在区间(-2,+∞)上小于零,∴a>6,故答案为:(6,+∞).解法二:设x2>x1>

已知函数f(x)=x2-2ax+3

∵函数f(x)=x2-2ax+3故函数f(x)的单调递减区间(-∞,a],(1)由f(x)的单调递减区间(-∞,2],故a=2则f(x)=x2-4x+3又∵函数f(x)在区间[3,5]上单调递增故x=

已知函数f(x)=x2+ax+1,f(X)∈[-3,1)

已知函数f(x)=x^2+ax+1,f(x)在x∈[-3,1)上恒有f(x)≥-3成立,求实数a的取值范围.f(x)=x^2+ax+1=(x+a/)^2+1-a^2/4(1)当-a/2<-3即a>6时

已知函数f(x)=alnx-ax-3,讨论f(x)的单调性

f'(x)=a/x-a=(a-ax)/x,x>0,若a=0,则函数在定义域内都等于-3,若a0,则在(0,1]递增,在(1,正无穷)递减

已知函数f(x)=x^3+3ax-1的导函数为f'(x),g(x)=f'(x)-ax-5

这两道题不一样,前一道g(x)=f'(x)-ax-3,这一道是g(x)=f'(x)-ax-51.所以g(x)=3x²-ax+3a-5=(3-x)a+3x²-50,即x

已知f(x)=xlnx,g(x)=x^3+2ax^2+2,当x>0,2f(x)

f(x)=xlnxg(x)=x^3+2ax^2+2当x>0,2f(x)0,g(x)+2-2f(x)>=0令F(x)=g(x)+2-2f(x)=x^3+2ax^2+4-2xlnx,其中F(0)=0F'(

已知f(x)=xlnx,g(x)=x^3+ax^2-x+2,若不等式2f(x)

g'(x)=3x²+2ax-1不等式2f(x)≤g'(x)+2即2xlnx≤3x²+2ax+1解集为P∵(0,+无穷)是P的子集∴x>0时,2xlnx≤3x²+2ax+1

已知f(x)=xlnx,g(x)=x^3+ax^2-x+2

求导,g’(x)=3x2+2ax-1g’(1)=2+2a=0(因为单调区间为(-1/3,1),故-1/3、1都为导函数0点)a=-1所以g(x)=x3-x2-x+2斜率k=g’(1)=0,切线方程为,

已知函数f(x)=x^3-ax^2+bx+3 若函数f(x)

解题思路:不对,由性质:相邻零点之间函数值同号可直接转化,不需要再用最值转化,用数形结合简单一些解题过程:最终答案:略

已知函数f(x)=ax÷2X+3)满足f[f(x)]=x求a的值

f(x)=ax/(2x+3)f[f(x)]=a[ax/(2x+3)]/[2ax/(2x+3)+3]=xa[ax/(2x+3)]/[2ax/(2x+3)+3]=x左边上下乘2x+3a^2x/(2ax+6

已知函数f(x)=ax^3-cx,-1

(1)若a=4,c=3,f(x)=4x^3-3x求导有:f'(x)=12x^2-3令f'(x)=0,即有:12x^2-3=0解得:x=±1/2,符合题意-1

已知f(x)=xInx,g(x)=x的3次方+ax²-x+2

1.a=-3/2,g(x)函数的解析式即知2.y=5x+63.你还是问老师吧我是今年刚毕业的考生都忘的差不多了一二问应该对!(0,正无穷)属于P那么P集合也是一个无穷集了.我尽力了!

已知函数f(x)=2ax^2-In(x+1),f(x)=x^3

a=1/2时,f(x)=x^2-in(x+1)要证2x^2-2in(x+1)

已知函数f(x)=ax(x

由题设[f(x1)-f(x2)]/(x1-x2)<0.易知,在R上,函数f(x)递减,一方面,当x<0时,f(x)=a^x递减,∴0<a<1,另一方面,当x≥0时,函数f(x)=(a-3)x+4a也递

已知函数f(x)=x^2+ax+3

1.已知函数f(x)=x^2+ax+3,当x∈R时,f(x)≥a恒成立,f(x)=x^2+ax+3=(x+a/2)^2-a^2/4+3,因为(x+a/2)^2≥0,所以f(x)≥-a^2/4+3;已知