已知f x 是定义在r上的奇函数,当x大于等于0时,f(X)等于2的X次方减1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:59:33
已知f x 是定义在r上的奇函数,当x大于等于0时,f(X)等于2的X次方减1
已知fx是定义在R上的奇函数,当x>0时,fx=x²+x的绝对值-1,求fx解析式

当x>0时,f(x)=x²+|x|-1当x0所以f(-x)=(-x)²+|-x|-1=x²+|x|-1所以f(x)=-f(-x)=-x²-|x|+1奇函数在原点

已知fx是定义在R上的奇函数,且x>0时,fx=2x+3,求fx在R上的解析式

解析:解答本题要把整个x的区间R分成三段来考虑,即:1.X∈(-∞.0)2.X=03.X∈(0,+∞)1.当X∈(-∞.0),X0,则f(-x)=2(-x)+3=-2x+3,∵f(x)是定义在R上的奇

题1,已知fx是定义在R上的奇函数,且当x大于0时,fx=x^2+x+1,求fx解析式

1.f(-x)=-f(x)=-x^2-x-1,x>0,令k=-x,f(k)=-k^2+k-1,k0;f(x)=0,x=0;f(x)=-x^2+x-1,x

已知定义在r上的奇函数fx 当x

因为1/a>1/b.(b-a)ab>0.所以ab>0.若a,b同时大于零.那么1/a>0,1/b>0.画出f(x)图像可以知道.a,ba=1或(1+根号5)/2(不符合条件舍去),同理,b=1,不满足

已知fx是定义在R上的奇函数,f(x+4)=fx,当x属于(0,2)时,fx=x+2,则f7=?

(1)f(7)=f(3+4)=f(3)=(-1+4)=f(-1)=-f(1)=-(1+2)=-3(2)把P.A.B.C这个三棱柱看成是一个长方体截出来的,那么长方体的体对角线长度就是根号6,半径就是二

已知定义在R上的奇函数fx满足fx-4=-fx,怎么知道周期为8?

f(x-8)=f[(x-4)-4]=-f(x-4)∵f(x-4)=-f(x)∴f(x-8)=f(x)即f(x)=f(x+8),f(x)以8为周期

已知函数fx是定义在R上的奇函数 当x>0是时 fx=x的平方+三次根号下x 求fx

x0则有f(-x)=(-x)^2+三次根号下(-x)又f(x)为奇函数,所以f(-x)=-f(x)所以-f(x)=f(-x)=(-x)^2+三次根号下(-x)即f(x)=-x^2-三次根号下x所以有f

已知函数fx是定义在R上的奇函数,当x>0时,fx= 1-2的-x次方,则不等式fx

解题思路:分析:先求f(x)的解析式,而题中已给出x>0时的表达式,故先由函数的奇偶性可得x<0和x=0时函数f(x)的解析式,之后再分别解两个不等式.解题过程:

已知fx是定义在R上的奇函数,gx是定义在R上的偶函数,且对任意x属于R,x不等于0

(1)看不到符号(2)奇(3)奇(4)偶例如:(2)f(f(—x))=f(—f(x))因为fx为奇函数所以f(—x)=—f(x)还有问题请追问再问:第一个是加号,为什么是非奇非偶再答:加法不能判断的要

已知fx是定义在R上的奇函数,当x

解题思路:此题关键在于求出x>0时的解析式,并要注意x=0时f(0)=0,然后借助基本不等式求其最小值,在求得过程当中还要注意分类讨论解题过程:

已知fx是定义在R上的奇函数且x

指数函数的图像会画么?f(x)=2^x图像会画吧,再加1就是将它的图像上移一个单位.x

已知fx是定义在R上的奇函数,且当x大于0时,fx=x^2+x-1,那么x小于0时fx=

1.f(-x)=-f(x)=-x^2-x-1,x>0,令k=-x,f(k)=-k^2+k-1,k0;f(x)=0,x=0;f(x)=-x^2+x-1,x

已知fx=in(e的x次方+a)是定义在R上的奇函数,gx=“入”fx

(1)函数f(x)=ln(ex+a)是定义域为R的奇函数,令f(0)=0,即ln(1+a)=0,解得a=0,故函数f(x)=ln(ex)=x.…(4分)显然有f(-x)=-f(x),函数f(x)=x是

设f x 是定义在r上的奇函数,fx+2=-fx,当0

利用fx+2=-fx得到:f(7.5)=-f(5.5)=f(3.5)=-f(1.5)=f(-0.5)再利用fx是定义在r上的奇函数得到:f(-0.5)=-f(0.5)再利用当0

已知fx是定义在R上的偶函数,在R上的奇函数gx过点(-1,1)且gx=fx-1,则f2007+f2008=

∵g(x)=f(x-1)∴g(-x)=f(-x-1)∵g(x)是奇函数∴g(x)=-g(-x)即f(x-1)=-f(-x-1)设y=x-1,则x=y+1带入上式得:f(y)=-f(-y-2)∴f(x)

已知函数fx一定义在R上的奇函数

解题思路:本题目考察函数奇偶性,列方程带入数值解得方案。解题过程:附件