已知efgh分别是菱形abcd的边ab.bc.cd.ad的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:29:56
已知efgh分别是菱形abcd的边ab.bc.cd.ad的中点
已知:如图,点E、F、G、H分别在菱形ABCD的各边上,AE=AH=CF=CG求证:四边形EFGH是矩形

证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF∴EH=GF在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-

已知E、F、G、H分别是菱形ABCD的边AB、BC、CD、DA的中点,求证:四边形EFGH是矩形

因为四边形ABCD为菱形所以AC垂直于BD又因为EH为中点所以EH与BD平行所以EH垂直于AC同理EF垂直于BD所以角FEH为直角同理其余三只角为直角所以四边形EFGH是矩形

菱形abcd的对角线ac和bd相交于o点 efgh分别是ab bc cd da的中点

说明:菱形的对角线互相垂直平分.所以,AC和BD相交成直角,菱形被对角线分成四个直角三角形.E、F、G、H分别是AB、BC、CD、DA的中点,所以,OE,OF,OG,OH分别是四个直角三角形斜边上的中

已知空间四边形ABCD中,AC=BD,E、F、G、H分别是AB,BC,CD,DA的中点,求证:四边形EFGH是菱形 求详

∵E、F是AB,BC的中点所以EF=0.5AC且EF∥AC同理GH=0.5AC且GH∥AC,FG=0.5BD∴GH=∥EF,FG=EF∴EFGH是平行四边形∵FG=EF∴EFGH是菱形

如图,已知四边形ABCD是菱形,E,F,G,H,分别是AB,AD,CD,BC的中点 求证:四边形EFGH是矩形.

证明:因为ABCD是菱形,所以AB=DA,BC=CD且AC垂直BD,又因为EFGH为其各边中点,所以EF∥=AC∥=GH;EH∥=BD∥=FG;∠ABD+∠BAC=90,所以∠FEH=90,所以四边形

已知:如图,顺次连接矩形ABCD各点中点得到四边形EFGH,求证:四边形EFGH是菱形.

连结AC,由E、F为中点可EF为中位线,则EF=1/2AC,同理GH=1/2AC,FG=1/2BD,EH=1/2BD;由矩形ABCD可知对角线相等,即AC=BD,从而得到EF=GH=FG=EH,所以四

如图所示已知e.f.g.h分别为菱形abcd各边中点求证四边形efgh为矩形

连接AC,BD因为E是AB的中点,H是AD的中点所以EH就是△ABD的中位线所以EH∥BD且EH=1/2BD同理在△CBD中,也可以得出FG∥BD且FG=1/2BD所以EH=FG且EH∥FG用同样的方

如图,已知四边形ABCD中,AB=CD,EFGH分别是BD,AC,AD,BC的中点,求证四边形EHFG是菱形

因为EFGH分别是BD,AC,AD,BC的中点所以GF=CD/2同理EH=CD/2所以GF=EH同理可得FH=GE=AB/2又因为AB=CD所以GE=EH=HF=FG四边形EHFG是菱形

在四边形ABCD中,EFGH分别是AD,BC,BD,AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足什么条件

还应满足AB=CD,理由如下:∵E、G是AD、BD中点,∴EG=1/2AB,同理FH=1/2AB,∴EG=FH,同理可得FG=EH=1/2CD,∴四边形EGFH是平行四边形,又∵AB=CD,∴EG=F

如图E、F、G、H分别是矩形ABCD的各边中点,求证:四边形EFGH是菱形.

证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,∴AC=BD,∴EF=12AC,EF∥AC,GH=12AC,GH∥AC同理,FG=12BD,FG∥BD,EH=

已知四边形ABCD中,E.F.G.H分别是AB,BC,CD,DA的中点,而且AC=BD,求EFGH是菱形

连接AC、BD,因为E.F.G.H分别是AB,BC,CD,DA的中点,由三角形中位线定理得EH=FG=1/2BD,EF=HG=1/2AC又因为AC=BD,所以EH=FG=EF=HG即四边形EFGH是菱

如图,已知四边形ABCD是矩形,E,F,G,H,分别是AB,BC,CD,DA的中点.求证:四边形EFGH是菱形

1.AE=BE=CG=DG;AH=DH=BF=CF;角A、B、C、D都是直角,根据勾股定理,可以计算出EH、HG、GF、EF的长度,可知EH=HG=GF=EF,因此,EFGH是菱形.2.连接矩形的两条

已知:平行四边形ABCD中,对角线AC=a,BD=b,四边形EFGH为内接菱形,且菱形的边长分别与平行四边形ABCD的对

因为AC‖HG,所以DH/AD=HG/AC,即DH/AD=HG/a,①因为BD‖EH,所以AH/AD=EH/BD即AH/AD=EH/b,②①+②,得,DH/AD+AH/AD=HG/a+EH/b整理:(

如图,EFGH分别是菱形ABCD四边的中点,菱形ABCD的面积为4倍根号3,对角线AC=2倍根号2

BD=ABCD的面积/AC=(4√3)/(2√2)=√6连接EG得到△EGH的面积为平行四边形AEGD的1/2而△EGF的面积为平行四边形BEGC的1/2四边形EFGH的面积就为菱形ABCD面积的1/

如图,已知四边形ABCD是矩形,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是菱形

连接AC和BD∵E、F、G、H分别是AB、BC、CD、DA的中点∴EF=1/2AC,HG=1/2ACHE=1/2BD,FG=1/2BD∵ABCD是矩形∴AC=BD∴EF=HG=HE=FG∴四边形EFG

已知,如图,从菱形abcd的对角线的交点o分别向各边引垂线,垂线分别是e,f,g,h,求证:四边形efgh为矩形

这个本来就是定理.证明:依题意得Rt△AOB≌Rt△AOD≌Rt△COD≌Rt△COB根据勾股定理可得EO=FO=GO=HO∴EG=FH又根据中点四边形定理,四边形EFGH是平行四边形∵EG=FH(对

已知四边形ABCD中,AC=BD,E、F、G、H分别为AB、BC、CD、DA中点,求四边形EFGH是菱形.

证明:∵E、F分别为AB、BC中点∴BE/BA=BF/BC=1/2又:角EBF=角ABC∴△EBF∽△ABC∴EF/AC=BE/BA=BF/BC=1/2∴EF=1/2AC同理:FG=1/2BD,GH=

已知:四边形ABCD中,AC=BD,E.F.G.H分别是AB.BC.CD.DA边上的中点,求证:四边形EFGH是菱形

授人以鱼不如教人以渔,解这样的题关键还是要有思路,不能向上面的人只给答案,将来你还是会遇到问题.思路如下:连接AC、BD,因为E.F.G.H分别是AB,BC,CD,DA的中点,由三角形中位线定理得EH