已知ca等于cb
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:00:26
AC=CBAD=BDCD=CD三角ACD全等于三角形BCD角CAD=角CBDMN分别为中点AN=BM又角CAD=角CBDAD=BD三角型AND全等于三角型BNDDN=DM
因为cf为角平分线,所以角acf等于角dcf又因为ac等于cd,cf为公共边,所以三角形afc全等于三角形dfc,所以fa等于fd,又因为ea等于eb,所以ef是三角形abd的中位线,所以ef等于二分
(1)连接OC,在AM上截取AQ=CN,连接OQ,∵O为CA、CB的垂直平分线的交点,∴OC=OA=OB,∵AC=BC,∴OC⊥AB,CO平分∠ACB,∴∠A=∠B=45°,即∠ACB=90°,∴∠O
(Ⅰ)证明:∵将△ACM沿直线CE对折,得△DCM,连DN,∴△DCM≌△ACM(1分)∴CD=CA,DM=AM,∠DCM=∠ACM,∠CDM=∠A又∵CA=CB,∴CD=CB(2分),∴∠DCN=∠
在△ABC中,S=(1/2)*|AB|*|AC|*sin(∠A)ABdotAC=|AB|*|AC|*cos(∠A),故:(1/2)*|AB|*|AC|*sin(∠A)=|AB|*|AC|*cos(∠A
证明:∵DC⊥CA,EA⊥CA∴∠A=∠C=90∵CD=AB,CB=AE∴△BCD≌△EAB(SAS)数学辅导团解答了你的提问,
∵DC⊥CA,EA⊥CA∴∠DCB=∠BAE又∵CD=AB,CB=AE∴△DBC≌△BEA(SAS)
CEF绕C点旋转,E,F在斜边AB上,线段AE,EF,FB总可以构成直角三角形.证明:将△CAE绕C逆时针旋转90°,A点和B点重合,E点到P,连PF,△CAE≌△CBP.∴BP=AE,又CP=CE,
关于你所提的问题:过D作BC的平行线交AC于E,过D作AC的平行线交BC于F.则由相似三角形知识知:CE=CA/3CF=2BC/3且CFDE为平行四边形.由矢量的平行四边形法则C→D=C→E+C→B=
λ=2/3AD=2DB,所以D为AB三等分点.令CE=1/3CA,E在CA上,则,E为CA三等分点.DE//CB由向量的加法规律,有CF=2/3CB,使得CEDF为一平行四边形,所以λ=2/3
/>向量AB=CB-CA,向量AD=2DB,则向量AD=2/3AB=2/3(CB-CA)=2/3CB-2/3CA,向量CD=CA+AD=1/3CA+2/3CB,即λ=2/3.
3.6从C点向AB边引条垂线再问:具体过程再答:先求出AB=5(勾股定理,会不),作CE垂直于AB,垂足为E,有角ACE=角ABC,有sinACE=sinABC即,AE/AC=AC/AB,所以AD=2
过A做AD⊥AC交BC于D∵∠A-∠B=90°∴∠B=∠A-90°=∠A-∠CAD=∠BAD∴BD=AD;AD^2+CA^2=CD^2;BD^2+CA^2=CD^2;CA^2=CD^2-BD^2CB=
因为全集是整体实数R,CB是对B集合求补集,因为x>2的补集是x≤2咯所以CB={x|x≤2}同样道理,对集合A={x|13}
1)首先,因为CA的绝对值等于CB的绝对值,就是说CA=CB2)所以C点就是在AB的中垂线上,又A,B是关于Y轴对称的,所以C点在轴Y上,因此C的横坐标是03)因为CA垂直于CB,所以可知三角形CAB
CEF绕C点旋转,E,F在斜边AB上,线段AE,EF,FB总可以构成直角三角形.证明:将△CAE绕C逆时针旋转90°,A点和B点重合,E点到P,连PF,△CAE≌△CBP.∴BP=AE,又CP=CE,
由题可知,(AC)^2+(BC)^2=(AB)^2,AB*CD=AC*BC>0因为显然CD>0,则(CD)^2>0,则(AB)^2
过点D作DE垂直于AB,E为垂足由BD是角平分线知CD=DE,BC=BE(角平分线上的点到角的两边距离相等)(或三角形BCD全等于三角形BED)又直角三角形ADE中,角A=45度得AE=DE,AE=C