已知BD垂直AM于点DCE垂直AN

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:11:37
已知BD垂直AM于点DCE垂直AN
如图,已知在平行四边形ABCD中,AE垂直于BD于E,CF垂直于BD于F,垂足分别为点E、F

证明:∵平行四边形ABCD∴AB=CD,∠ABD=∠CDB∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90∴△ABE全等于△CDF(AAS)∴AE=CF

如图,AC与BD相交于点O.已知AD垂直于BD,BC垂直于AC,AC等于BD,则OA=OB.

因为AD垂直于BD,BC垂直于AC,所以三角形ABD,和三角形ABC都是直角三角形.又因为AC=BD,AB是公共边,根据勾股定理,则AD=BCAC与BD相交于O所以角AOD等于角BOC又角ADO=角B

如图,已知在三角形ABC中,AD垂直BC于点D,BE垂直AC于点E,AD=BD,求证:AF+DC=BD

角dac=ebc角adb=adcad=bd所以fbd和adc全等所以fd=dcaf+dc=af+fd=ad=bd

如图,已知三角形ABC中,AD垂直BC于点D,BE垂直AC于点E,AD=BD.求证AF+DC=BD

因为AD垂直BC,所以,角ABD=角ADC=90度,角C+角CAD=90度.因为BE垂直AC,所以,角C+角CBE=90度,所以,角CAD=角CBE.又因为BD=AD,所以,三角形FBD全等于三角形C

如图所示,在三角形ABC中,AB=AC.BD.CE分别是所在角的平分线,AN垂直BD于N点,AM垂直CE于M点

(1)AB=AC所以角ABC=角ACB所以角ACM=角ABN因为角M=角N所以三角形ABN全等于三角形ACM所以AM=AN(2)因为角BAC等于36度所以角ABC=角ACB=72度所以角ACM=角AB

如图,已知:CE垂直AB于点E,BD垂直AC于点D,BD,CE交于点O,且AO平分角BAC,求证:

由AO平分∠BAC,∴∠BAO=∠CAO,又AO是公共边,∴AO=AO,∠AEO=∠ADO=90°,∴△AEO≌△ADO(AAS)∴EO=DO,∵∠EOB=∠DOC,∴△EOB≌△DOC(ASA)所以

已知菱形ABCD,对角线AC,BD相交于点O,ON垂直于AD,OM垂直于BC,OE垂直于AB,OF垂直于DC,

角NAO=角ONENF平行于EM(通过AE/EB=CM/BM)所以角DNF=角ONE就可以得出ENF是直角其他类似

已知M在正方形ABCD的一边上BC上,连接AM,并过点M做MN垂直于AM,交正方形ABCD的外角 角DCE 的平分线于点

不需要连接AN.在AB上取一点F,使BF=BM,连接MF然后证三角形AFM与三角形MCN全等,用角边角来证明,过程非常简单,相信你应该会证的.再问:大神啊我就是有点想不明白这里才问的呜呜可不可以不要相

已知四边形ABCD为平行四边形,AE垂直于BD于点E,CF垂直于BD于点F

证明:(1)∵四边形ABCD是平行四边形∴AB=CD,AB//CD∴∠ABE=∠CDF∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90°∴△AEB≌△CFD(AAS)∴BE=DF(2)∵四边形ABC

如图,ac于bd相交于点o,已知ad垂直于bd,bc垂直于ac,ac等于bd,则oa等于ob.请说明理由.

证:ad垂直于bd,bc垂直于ac,则角ADB=角ACB=90°而ac等于bd所以AD²=AB²-BD²=AB²-AC²=BC²即AD=BC

已知:如图,平行四边形ABCD中,BD是对角线,AE垂直于BD于点E,CF垂直于BD于点F.试说明:BE=DF

因为AB=CD,角CDE=角ABE(内错角),角CFD=角AEB=90°,所以三角形ABE全等于三角形CDF,所以BE=DF.

如图所示,已知BD垂直于AM于点D,CE垂直于AM于点E,求证角1+角2=180°

因为:BD垂直于AM于点D,CE垂直于AM于点E,所以:BD与EC平行.所以:角1=角BCE(同位角相等)因为:角2与角BCE互为补角,所以:角2+角BCE=180°.所以:角1+角2=180°

三角形ABC,已知BD、CE分别平分角ABC、ACB,AM垂直CE于M,AN垂直BD于N.求证MN=1/2(AB+AC-

证明:延长AM、AN分别交BC于点P、Q,∵MC是∠ACB的平分线,AM⊥CE∴AM=MPAC=PC同理可得:AP=PQAN=NQ∵AM=MPAN=NQ∴MN是△APQ的中位线∴MN=1/2PQ又∵P

如图,在矩形ABCD中,已知对角线AC、BD交于O点.AM垂直BD于M,CN垂直BD于N,AB=2,AD=二倍根号三.试

BD=√(AB²+AD²)=√(2²+(2√3)²)=4∵BM/AB=AB/BD∴BM=AB²/BD=4/(2√3)对角线BD中:MN=BD-BM-N

如图,已知ac,bd是圆o的两条互相垂直的弦,并且ac,bd相交于点r,op垂直bc,oq垂直ad.

连接BO并延长交圆O于E,连接CE,可证∠BCE=90°∵∠ACB+∠ACE=90°,∠ADB+∠CAD=90°,∠ADB=∠ACB﹙等弧﹚∴∠ACE=∠CAD∴弧AD=弧CE∴AD=CE∵PO=1/

已知正方形ABCD的对角线AC,BD相交于点O.E是AC上的一点,连结EB,过点A作AM垂直BE,垂足为M,AM交BD于

(1)连接ED,因为正方形对角线互相垂直平分,所以AC是BD的中垂线,所以DE=BE所以三角形BDE是等腰三角形,即角EBD=角EDB,又因为AC垂直BD,AM垂直BE所以角MAC=角EBD等于角ED

正方形ABCD,M是BC的中点,连接AM,MN垂直于AM,将BC延长至点E.MN交角DCE的平分线于点N,连接点C与点N

1.证明:∵∠AMB+∠CMN=∠AMB+∠MAB=90,      ∴∠CMN=∠MAB // ∠B=∠MCD=90&