已知BD,CE分别是△ABC的两条高,∠BCE=45°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:15:13
2、△ABC是等边三角形,AD是BC边上的高,所以角DAE=30度,CE=CD,角E=角CDE,角DCE=120度,所以角E=30度,角DAE=角E=30度,所以AD=DE
证明:在△ABD和△ACE中AB=AC且∠A是公共角∠ABD=∠ACD=1/2∠ABC=1/2∠ACB∴△ABD≌△ACE∴BD=CE
AB=AC,D、E分别是中点所以AD=AE又AB=AC共用角A所以△ABD≌△ACE,所以∠ABD=∠ACE,又△ABC等腰,∠ABC=∠ACB,所以∠DBC=∠ECB,所以△OBC是等腰三角形,所以
因为CD、BE分别是等腰三角形ABC的高线所以CD⊥AB,BE⊥AC所以△ADC和△AEB是直角三角形而∠DAC=∠EAB(公共角)AB=AC(已知)所以RT△ABE全等于RT△ACD(AAS)所以A
证明:由面积法,△ABC的面积=(1/2)AB*CE=(1/2)AC*BD,因为CE=BD,所以AB=AC,所以A点A在线段BC的垂直平分线上(到线段两端距离相等的点在线段的垂直平分线上)
(1)FG垂直平分DE, 证明:连接GD、GE.∵BD是△ABC的高,G为BC的中点,∴在Rt△CBD中,GD=12BC,(直角三角形斜边上的中线等于斜边的一半)同理可得GE=1
1.作DF平行EC,交BC延长线于F,连接ED,因:ED为三角形ABC的中线,所以:ED平行BC,ED=BC/2四边形EDFC为平行四边形,所以:CF=ED=BC/2,DF=EC=6三角形BDF为RT
连接DE∵D、E分别为AC,AB的中点∴DE‖BC,DE=1/2BC∴S△ADE=1/4S△ABC=1/3S四边形BCDE∵BD⊥CE∴S四边形BCDE=1/2BD*CE=1/2*4*6=12∴S△A
如图,连接ED,则S四边形BCDE=12DB•EH+12BD•CH=12DB(EH+CH)=12BD•CE=12.又∵CE是△ABC中线,∴S△ACE=S△BCE,∵D为AC中点,∴S△ADE=S△E
不连接DE点的话有2个等腰三角形.ABC和GBC连接DE点就有4个等腰三角形.ABC和GBC,ADE,GDE.再问:但是答案上写的是6个为什么呢再答:有些时候答案也不完全可靠,但是如果角ABC=2倍角
设BD与CE的交点为O在三角形AOE和三角形COD中,因为BD是三角形ABC的高,所以角CDO=90度;因为CE是三角形ABC的高,所以角BEO=90度;且角BOE=角COD(对顶角)所以,角EBO=
证明∠ABD=∠DBC,则弧AD=弧DC,可推出AD=DC同理可证:AE=BEE、B、C、D四点共圆可推出△BEC≌△BDCBE=DCAD=DC=AE=BE∠A=36°,易得∠ABD=∠DBC=36°
(1)如图1,∵AF⊥BD,∠ABF=∠MBF,∴∠BAF=∠BMF,在△ABF和△MBF中,∵∠AFB=∠MFB BF=BF ∠ABF=∠MB
BD和CE分别是△ABC中两边上的中线,设它们相交于G点,则G是△ABC中的重心,∴CG=(2/3)CE=(2/3)×12=8,∵BD⊥CE,∴S△BCD=(1/2)×BD×CG=(1/2)×8×8=
EM,DM分别是两个直角三角形的斜边中线,所以,斜边都是BC,EM=DM三角形DME是等腰三角形N是DE边中点,所以MN是△DME的中线也是高(等腰三角形性质)
证明:当以AB为底边,CE为高时,S△ABC为:AB×CE×1/2当以AC为底边,BD为高时,S△ABC为:AC×BD×1/2∵AB×CE×1/2=AC×BD×1/2∵BD=CE∴AB=AC∴△ABC
证明:因为BD,CE分别是AC,AB边上的高,所以三角形BCD和三角形BCE都是直角三角形,角BDC=角BEC=直角,又因为BC=BC,BD=CE,所以直角三角形BCD全等于直角三角形BCE(斜边,直
延长AF,与CB的延长线交于H.延长AG,与BC的延长线交于K.∵BD平分∠ABC,∴△ABF≌△HBF.AF=FH.AB=HG.∵CE平分∠ACK,∴△ACG≌△KCG.AG=GK.AC=KC.∴F
三角形ABM中,BF垂直AM,BF平分角ABM,三角形ABM等到腰,AB=BM,F是AB中点,同理,在三角形ACN中AC=CN,G是AN中点,GF是三角形ANM中位线,GF=1/2(MN)=1/2(B