已知BD,CE分别为角ABC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:11:12
若∠BAC与这个50°的角在一个四边形BCDE内,因为BD、CE是△ABC的高,∴∠AEB=∠ADC=90°,∴∠BAE=50°,∴∠BAC=130°;若∠BAC与这个50°的角不在一个四边形BCDE
延长AM交BC于点F,延长AN交BC于点G因为BD是角ABC的平分线,AN垂直BD所以角ABN=角GBN,角ANB=角GNB=90度因为BN=BN所以三角形BNA全等于三角形BNG所以AN=GN同理C
延长AG交BC于M,延长AF交BC于N,则由题设可知BG⊥AM,CF⊥AN,又∵BG平分∠ABC,CF平分∠ACB,∴△ABM和△ACN是等腰三角形,∴AC=CN=7,AB=BM=9∴MN=BM+CN
△AFB中∠BAF=90-∠ABF△CEB中∠CBE=90-∠ABF所以∠BAF=∠CBE又因为AB=BC所以△AFB与△CEB全等因此BF=CE,AF=BE所以EF=BF-BE=CE-AF
证明:在△ABD和△ACE中AB=AC且∠A是公共角∠ABD=∠ACD=1/2∠ABC=1/2∠ACB∴△ABD≌△ACE∴BD=CE
因为CD、BE分别是等腰三角形ABC的高线所以CD⊥AB,BE⊥AC所以△ADC和△AEB是直角三角形而∠DAC=∠EAB(公共角)AB=AC(已知)所以RT△ABE全等于RT△ACD(AAS)所以A
分别延长AF与AG交BC边于点M,N因为角ABG=角NBG角AGB=NGB角=90度BG=BG所以三角形ABG全等于三角形NBG所以AG=NG,AB=NB同理AF=MF,AC=MC所以FG为三角形AM
延长AE,CB交于H延长AG,BC交于K因为BD与CE分别为∠B和∠C的平分线,AG⊥CE,AH⊥BD可证AE=EHE是AH的中点(可用全等△ACE全等HCE(角边角)用到平分角,公共边,垂直角相等)
证明:∵BD⊥AC∴∠ADB=90°∵CE⊥AB∴∠AEC=90°∴∠ADB=∠AEC∵∠A=∠A∴△ADB∽△AEC∴AD/AE=AB/AC∴AD/AB=AE/AC(比例性质)在△DAE与△BAC中
不连接DE点的话有2个等腰三角形.ABC和GBC连接DE点就有4个等腰三角形.ABC和GBC,ADE,GDE.再问:但是答案上写的是6个为什么呢再答:有些时候答案也不完全可靠,但是如果角ABC=2倍角
三角形abc为等边三角形、ce平分角acd所以角ace=60度=角abdab=ac因为ce=bd所以三角形abd全等于三角形ace所以ae=ad所以三角形ade为等边三角形
证明:∵CE⊥AB,BD⊥AC,∴△EBC和△DCB都是直角三角形,在Rt△EBC与Rt△DCB中BC=CBBD=CE,∴Rt△EBC≌Rt△DCB(HL),∴∠BCE=∠CBD,∴OB=OC.
过a作af平行于bc交ce于f,因为ce平分角acd,所以ab平行于ce,三角形acf是等边三角形,af=ac,角afe=120=角acd,又因为ce=bd,cf=bc,所以fe=cd,所以三角形ac
证明:∵BD⊥AC∴∠ADB=90°∵CE⊥AB∴∠AEC=90°∴∠ADB=∠AEC∵∠A=∠A∴△ADB∽△AEC∴AD/AE=AB/AC∴AD/AB=AE/AC(比例性质)在△DAE与△BAC中
(1)延长AE,交BC于点M,延长AD,交BC于点N∵CD是∠ABN的平分线,BD⊥AN易证:△BAN是等腰三角形∴AE=EM同理:AD=DN∴DE是△AMN的中位线∴DE‖MN,即DE‖BC(2)由
证明:延长AM、AN分别交BC于点P、Q,∵MC是∠ACB的平分线,AM⊥CE∴AM=MPAC=PC同理可得:AP=PQAN=NQ∵AM=MPAN=NQ∴MN是△APQ的中位线∴MN=1/2PQ又∵P
∵劣弧BC的度数为120°∴∠BAC=60°∴∠ABC+∠ACB=120°∵BD平分∠ABC,CE平分∠ACB∴∠CBD+∠ECB=12(∠ABC+∠ACB)=60°∴∠CFD=60°∴∠BFE=60
过C作CG平分∠ACB交BD于G∵∠ACB=90°∴∠ACG=∠BCG=45°∵∠ACB=90°AC=BC∴∠A=∠CBA=45°∴∠A=∠BCG∵CE⊥BD∴∠BCE+∠CBE=90°∵∠BCE+∠
证明:因为BD,CE分别是AC,AB边上的高,所以三角形BCD和三角形BCE都是直角三角形,角BDC=角BEC=直角,又因为BC=BC,BD=CE,所以直角三角形BCD全等于直角三角形BCE(斜边,直
证:∵三角形的三条角平分线交于一点∴OA平分角BAC∴角BAO等于角CAO