已知A是n阶方阵, 且满足 A^2-3A 3I=0;求(A-I)的逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:04:36
已知A是n阶方阵, 且满足 A^2-3A 3I=0;求(A-I)的逆
已知A为n阶方阵,且满足A^2-3A-4E=0,证明:A可逆,并求A-1次方

A^2-3A-4E=0A^2-3EA=4E(A-3E)A=4E所以|A-3E||A|=|4E|=4^n≠0所以|A|≠0故A可逆因为(A-3E)A=4E所以[(A-3E)/4]A=E所以A^(-1)=

设A是n阶方阵,且(A+E)^2=0,证明A可逆.

由(A+E)^2=0得A^2+2A+E=0A(-A-2E)=E所以A可逆且逆矩阵为-A-2E

线性代数:已知n阶方阵A满足A^2=E,证明A-E可逆;

因为A^2=E所以(A-E)(A+E)=0题目是不是有问题

设n阶方阵A满足A²=2A.证明A的特征值只能是0或2

证明:设a是A的特征值则a^2-2a是A^2-2A的特征值因为A^2-2A=0所以a^2-2a=0所以a(a-2)=0所以a=0或a=2.即A的特征值只能是0或2.

线代证明题求解设A是n阶方阵,且满足R(E+A)+R(E-A)=n,试证:A满足A^2=E.

Only_唯漪的证法我好像没有看懂的样子……果然代数都忘光了,这里给出一种Jordan标准型的证法参考一下:——————————————————————————————————————————∵R(E

.已知n阶方阵A满足关系式A^2-3A-2E=0,证明A是可逆矩阵,并求出其逆矩阵.

A^2-3A=2EA*(A-3E)/2=E所以A可逆逆矩阵为A^(-1)=(A-3E)/2

设A为n阶方阵,且满足A^2-3A+2E=0,证明A的特征值只能是1或2

设A的特征值是a,则a^2-3a+2是A^2-3A+2E的特征值.由已知A^2-3A+2E=0,而零矩阵的特征值只能是零,所以a^2-3a+2=0,即(a-1)(a-2)=0.所以a=1或a=2.即A

A是n阶方阵,满足A^2-2A-2E=0,则(A+E)^-1=

3E+2A-A^2=E(3E-A)(E+A)=E所以(A+E)^-1=3E-A

已知N阶方阵A满足A^2=4A,证明A-5E可逆?

A^2=4AA(A-4I)=0A=0orA-4I=0ifA=0A-4I=-4I(A-4I)^(-1)=(-1/4)IifA-4I=0A-5I=-Ithen(A-5I)^(-1)=-IieA-5I可逆

已知n阶方阵A,满足A^3+A^2-2A=0,I是n阶单位阵,证明矩阵A+I必可逆

A^3+A^2-2A=0A^2(A+I)-2A-2I=-2I(A^2-2I)(A+I)=-2I-1/2(A^2-2I)(A+I)=I所以A+I可逆逆阵是-1/2(A^2-2I)

设A是n阶方阵,满足A乘以A一撇等于E,|A|

[A+E]=[A+A*A']=[A][E+A']=[A][(A+E)']=[A]*[A+E]得到(1-[A])[A+E]=0因为|A|

已知n阶方阵A满足A^2+2A-3E=0,证明A可对角化

[证明](方法一:构造法)见下图\x0d\x0d[证明](方法二:利用特征值与特征向量)见下图\x0d\x0d[证明](方法三:利用极小多项式)\x0d因为A满足A2+2A-3E=O,即(A-E)(A

已知A为n阶方阵,且满足关系式A^2+3A+4E=0,则(A+E)^-1=

显然由A^2+3A+4E=0可以得到(A+E)(A+2E)=-2E,即(A+E)(-A/2-E)=E,所以由逆矩阵的定义可以知道,(A+E)^-1=-A/2-E

已知A是n阶方阵,且满足(A-E)^2=2(A+E),E是n阶单位矩阵,则A^-1=?

(A-E)²=2(A+E)²A²-2A+E=2A²+4A+2E整理得:A²+6A=-EA(A+6E)=-E所以A[-(A+6E)]=E故A^-1=-(

已知A为n阶方阵且A^2=A,求A的全部特征值.

1.设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a

设n阶方阵A满足A^2=En 且 |A+En|不等于0,证明:A=En

A^2=AA=E===>A=A'=A^(-1)=A^*并且A不为0或(-E)因为E^2=E===>A^2-E^2=0===>(A+E)(A-E)=0--->A=EToyourquestion:IfAB

已知n阶方阵A满足 A^2-3A+E=0,则A的逆矩阵为多少?

A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A

已知四阶方阵A满足|A-E|=0,方阵B=A^3-3A^2,满足BB^T=2E,且|B|

已知矩阵M=2321,求矩阵M的特征值与特征向量.考点:特征值与特征向量的计算.专题:计算题.分析:先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的