已知a是n维列向量,且a^Ta=1,若A=E-aa^T,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:52:23
既然A是秩为1的mxn矩阵,则存在可逆矩阵P,Q使得A=PA'Q其中A'为A的标准型,就是只有最左上角为1,其他都为0的矩阵则PA'只有第一列为非0,A‘Q只有第一行为0,取a为PA'的第一列,b为A
因为aa^T的特征值为||a||^2,0,0,...,0所以A的特征值为1-||a||^2,1,1,...,1都大于0所以A是正定的
易知:A是m*n矩阵,且列向量组线性无关,所以r(A)=n,所以r(AB)=r(A)=n,因为n=r(AB)≤r(B)(或r(A))≤n(B是n阶矩阵)所以n≤r(B)≤n=>r(B)=n(2)此外,
证:因为A为正交矩阵,所以A^TA=E(单位矩阵)从而||Aa||=√(Aa)^T(Aa)=√a^TA^TAa=√a^Ta=||a||再问:||a||?==√a^Ta这是为什么再答:不谢,那是公式。
a1≠0,{a1}线性无关.①证明{a1,a2}线性无关:假如{a1,a2}线性相关.a2=ka1.Aa2=Aka1=kAa1=ka1=a1+a2=(1+k)a1,a1≠0,k=1+k,不可.∴{a1
只要证明0是特征值即可.经济数学团队帮你解答.请及时评价.谢谢!再问:问一下再问:a为n维列向量,a∧Ta=1,aa∧T会等于E吗再答:一般不会,r(aa^T)
证明:由已知,r(A)=m,r(B)=n-m所以AX=0的基础解系含n-r(A)=n-m个向量又因为AB=0,所以B的列向量组都是AX=0的解而r(B)=n-m所以B的列向量组组构成AX=0的基础解系
解题思路:三角函数性质解题过程:最终答案:略
1m与n垂直,向量数量积为0所以m,n相乘,3ta^+(6-t)ab-2b^=03t+(6-t)x1x2x0.5-2x4=0t=12向量夹角等于数量积除以模,求摸的方法是先平方再开方这样可求得|m|=
设x为一个常数.考虑:(E+ab')(E+xab')=E+ab'+xab'+ab'xab'=E+(1+x)ab'+a(xb'a)b'=E+(1+x+xb'a)ab'于是当1+x+xb'a=0时E+a(
是A的行向量组线性无关吧再问:我也觉得问题是这样的,谢谢您了。麻烦您再给一下证明行向量组线性无关的具体步骤再答:因为AB=C所以C的列向量组可由A的列向量组线性表示所以r(C)=m而A有m行,所以r(
一个更正,问题中的“a=2/3”似乎有误,应为“a^Ta=2/3”首先可知A是一个对称阵,那么AA^T=E就等价于(E-3aa^T)(E-3aa^T)=E,展开就得E-6aa^T+9(a^Ta)(aa
R(A)=n-1,首先可以确定,A的基础解系所含的解向量个数是n-(n-1)=1个那么就很简单了,找一个向量,代入AX=0可以使之成立就行了.利用题目的暗示,这个向量可能是a我们试一试代入AX=0(E
(1)考虑分块矩阵的行列式|H|=Aαβ^T-1第2行减第1行的β^TA,得Aα0-1-β^TA^-1α所以|H|=-(1+βTA^-1α)|A|.另一方面,|H|第1行加第2行的α倍,得A+αβ^T
哈,昨天刚复习到这种题!打字不方便,看相册吧,效果不是很好,?v=1
a^Ta=(E-2aa^t)^T(E-2aa^t)=(E-2aa^t)(E-2aa^t)=E-2aa^t-2aa^t+4aa^taa^t=E-4aa^t+4a(a^ta)a^t=E-4aa^t+4aa
这个很简单:跟着我的思路来第一你要知道关于求转置,有一个脱衣原则.即(AB)^T=(B^T)(A^T),语言描述是AB的转置等于B的转置乘以A的转置,注意是从后往前脱衣,脱衣后B在前A在后.其中A,B
Ax=b总有解则Ax=εi有解所以εi可由A的列向量组线性表示所以单位向量可由A的列向量组线性表示所以单位向量与A的列向量组等价反之,因为任一向量b可由单位向量组线性表示所以b可由A的列向量组线性表示