已知An的各项均为正数:且6Sn=(an)2 3an 2;求数列的通项公式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:18:37
已知An的各项均为正数:且6Sn=(an)2 3an 2;求数列的通项公式
已知{an}是各项均为正数的等比数列,{根号an}是等比数列吗?为什么?

正数项等比数列an/an-1=q,q>0根号an/根号an-1=根号q,所以{根号an}仍是等比数列.

已知an是各项均为正数的等比数列,根号an是等比数列嘛…为什么?

是原数列是a1a1qa1q^2a1q^3a1q^4.根号an根号a1(根号a1)*(根号q)(根号a1)*q(根号a1)*(根号q)*q.任意相邻两项比值为是根号q因为原来q是等比数列公比,根号q不会

已知{an}是各项均为正数的等比数列,{根号an}是等比数列么?(详细过程)

是{an}是各项均为正数的等比数列q大于0{根号an}是以根号a1为首项根号q为公比的等比数列

已知等比数列an的各项均为正数,且2a1+3a2=1,a3²=9a2a6

a3^2=a1^2*q^4  a2*a6=a1^2*q^6  q=1/3  2a1+3a1*q=1  a1=1/3  an=(1/3)^n  bn=-1-2-3-...-n=-(n+1)n/2  令c

已知等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6.

(1)a3^2=9a2a6(a2p)^2=9a2(a2p^4)a2^2p^2=9a2^2p^4∵此数列各项均为正数∴a2^20,p>0两边同时除以a2^2p^2,得9p^2=1,p=1/32a1+3a

已知等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6

a32=9a2a6=9a4的平方,因为全为正项,所以a3=3a4所以公比是1/3所以a1=3a2又因为2a1+3a2=1所以3a1=1所以a1=1/3那么这个数列就是首项1/3公比也是1/3的数列an

已知等比数列{an}的各项均为正数,且a5a6=27,求log3a1+log3a2+...+log3a10

在等比数列中有a5a6=a4a7=a3a8=a2a9=a1a10所以有log3a1+log3a2+...+log3a10=log3(a5a6*a4a7*a3a8*a2a9*a1a10)=5log3a5

已知数列{an}各项均为正数,其前N项和为sn,且满足4sn=(an+1)^2.求{an}的通项公式

4Sn=(an+1)^24Sn-1=(an-1+1)^2n-1为下标则4an=4Sn-4Sn-1=(an+1)^2-(an-1+1)^2化简得(an-1)^2=(an-1+1)^2则an-1=正负(a

已知数列{a}的各项均为正数,且a1=2,An-1-An=(2倍根号An)+1,求它的通项公式.

设bn=根号an所以A(n-1)-An=(2倍根号An)+1等于根号[b(n-1)]^2-bn^2=2bn+1即[b(n-1)]^2=(bn+1)^2因为{a}中各项为正数,且a1=2所以b(n-1)

已知各项均为正数的数列{an}满足(an+1)²-an+1×an-2an²=0,且a3+2是a2,a

∵(an+1)²-an+1×an-2an²=0∴(an+1+an)(an+1-2an)=0∴an+1-2an=0,an+1+an=0(舍去)∴an+1=2an∴an是等比数列,设a

已知数列{An}的各项均为正数,前n项和为Sn,且满足2Sn=An²+n-4 1.求证{An}为等差数列

1.n=1时,2a1=2S1=a1²+1-4a1²-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=

各项均为正数的数列{an}的前n项和为S,且sn=1\8(an+2)².求证数列{an}是等差数列

sn=(1/8)(an+2)²S(n-1)=(1/8)[a(n-1)+2]²an=Sn-S(n-1)=(1/8){(an+2)²-[a(n-1)+2]²}=(1

已知数列AN的各项均为正数,且前N项和满足6Sn=an^2+3an+2,求数列通项公式

6Sn=an^2+3an+26S(n-1)=a(n-1)^2+3a(n-1)+26Sn-6S(n-1)=6an=an^2+3an+2-a(n-1)^2-3a(n-1)-26an=an^2+3an-a(

已知各项均为正数的数列{An}的前n项和Sn满足S1>1,且

1)6Sn=An^2+3An+2因为S1=A1所以6A1=A1^2+3A1+2A1^2-3A1+2=0(A1-1)(A1-2)=0因为A1=S1>1所以A1=2因为An=Sn-S(n-1)注S(n-1

已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an-3.

(1)当n=1时,a1=s1=14a21+12a1−34,解出a1=3,又4Sn=an2+2an-3①当n≥2时4sn-1=an-12+2an-1-3②①-②4an=an2-an-12+2(an-an

已知数列an的各项均为正数且a1+a2+a3+.an=1/2(an²+an)求证数列an是等差数

a1+a2+...+an=(1/2)(an²+an)a1+a2+...+a(n-1)=(1/2)(a(n-1)²+a(n-1))两式相减得an=(1/2)(an²+an)

已知各项均为正数的数列{an}的前n项和为sn,且sn,an,1成等差数列,求数列{an}的通项公式

Sn、an、1成等差,则2an=Sn+1(n=1时,得a1=1),当n≥2时,有2a(n-1)=S(n-1)+1,则2an-2a(n-1)=an,即an/[a(n-1)]=2=常数,所以{an}是等比

已知各项均为正数的数列{an}前n项和为Sn,首相为a1,且½,an,Sn是等差数列,求通项{an}公式

由题意知2an=Sn+1/2,an>0,当n=1时,2a1=a1+1/2,解得a1=1/2,当n≥2时,Sn=2an-1/2,S(n-1)=2a(n-1)-1/2,两式相减得an=Sn-S(n-1)=

已知各项均为正数的数列{an}的前n项和为Sn,且Sn,an,12成等差数列,

(1)由Sn,an,12成等差数列,可得2an=Sn+12,∴a1=12,a2=1(2)由2an=Sn+12可得,2Sn=4an-1(n≥1),∴2Sn-1=4an-1-1(n≥2)∴两式相减得2an