已知an的各项均为正数,前n项和为Sn且满足2Sn=an² n-4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:37:38
(1)∵2Sn=an2+n-4(n∈N*).∴2Sn+1=an+12+n+1-4.两式相减得2Sn+1-2Sn=an+12+n+1-4-(an2+n-4),即2an+1=an+12-an2+1,则an
设公比为q,则q>0,a2=a1q,a3=a1q²由a1=2,S3=a1+a2+a3=14,得q=2∴an=2^n(n为正整数)证明:bn=n/an=n/2^n(n为正整数),前n项和为Tn
4Sn=(an+1)^24Sn-1=(an-1+1)^2n-1为下标则4an=4Sn-4Sn-1=(an+1)^2-(an-1+1)^2化简得(an-1)^2=(an-1+1)^2则an-1=正负(a
证明:∵Sn=an(an+1)2∴S1=a1(1+a1)2∴a1=1…(1分)由2Sn=a2n+an2Sn-1=a2n-1+an-1⇒2an=2(Sn-Sn-1)=a2n-a2n-1+an-an-1…
1.n=1时,2a1=2S1=a1²+1-4a1²-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=
n=1时,2a1=2S1=a1^2+1-4a1^2-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=an^2+n-4-a
4a(1)=[a(1)+1]^2a(1)=14a(n+1)=[a(n+1)+1]^2-[a(n)+1]^2[a(n)+1]^2=[a(n+1)-1]^2若a(n+1)>1a(n+1)=a(n)+2a(
6Sn=an^2+3an+26S(n-1)=a(n-1)^2+3a(n-1)+26Sn-6S(n-1)=6an=an^2+3an+2-a(n-1)^2-3a(n-1)-26an=an^2+3an-a(
1)6Sn=An^2+3An+2因为S1=A1所以6A1=A1^2+3A1+2A1^2-3A1+2=0(A1-1)(A1-2)=0因为A1=S1>1所以A1=2因为An=Sn-S(n-1)注S(n-1
当n=1时,S1=a1=1/2(a1^2+a1),解得a1=1当n>1时,an=Sn-S(n-1)=1/2(an^2+an)-1/2[a(n-1)^2+a(n-1)],整理得[an+a(n-1)][a
6Sn=An^2+3An+26S(n-1)=[A(n-1)]^2+3A(n-1)+26Sn-6S(n-1)=6An=An^2+3An+2-{[A(n-1)]^2+3A(n-1)+2}An-A(n-1)
(1)a1=(a1+1)24,解得a1=1,当n≥2时,由an=Sn-Sn-1=(an+1)2−(an−1+1)24,得(an-an-1-2)(an+an-1)=0,又an>0,所以an-an-1=2
(1)当n=1时,a1=s1=14a21+12a1−34,解出a1=3,又4Sn=an2+2an-3①当n≥2时4sn-1=an-12+2an-1-3②①-②4an=an2-an-12+2(an-an
n>=2时,S[n]=1/4*(a[n]+1)^2;S[n-1]=1/4*(a[n-1]+1)^2两式相减得到a[n]=1/4*(a[n]^2+2a[n]-a[n-1]^2-2a[n-1])化简得到a
4a(1)=[a(1)+1]^2a(1)=14a(n+1)=[a(n+1)+1]^2-[a(n)+1]^2[a(n)+1]^2=[a(n+1)-1]^2若a(n+1)>1a(n+1)=a(n)+2a(
根号Sn的通项公式是nSn=n^2an=Sn-Sn-1=n^2-(n-1)^2=2n-1
Sn、an、1成等差,则2an=Sn+1(n=1时,得a1=1),当n≥2时,有2a(n-1)=S(n-1)+1,则2an-2a(n-1)=an,即an/[a(n-1)]=2=常数,所以{an}是等比
由题意知2an=Sn+1/2,an>0,当n=1时,2a1=a1+1/2,解得a1=1/2,当n≥2时,Sn=2an-1/2,S(n-1)=2a(n-1)-1/2,两式相减得an=Sn-S(n-1)=
(1)由Sn,an,12成等差数列,可得2an=Sn+12,∴a1=12,a2=1(2)由2an=Sn+12可得,2Sn=4an-1(n≥1),∴2Sn-1=4an-1-1(n≥2)∴两式相减得2an
由题意2an=Sn+1/2Sn=2an-1/2n=1时,S1=a1a1=2a1-1/2a1=1/2S(n+1)-Sn=a(n+1)2a(n+1)-1/2-[2an-1/2]=a(n+1)a(n+1)=