已知ab是圆o的直径DA,DC分别是圆O的切线,点AC是切点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:05:37
已知ab是圆o的直径DA,DC分别是圆O的切线,点AC是切点
在梯形ABCD中,AB平行DC,角B =90°,AD=AB+DC,AD是圆O的直径,求证BC与圆O相切

过O作BC的垂线交于F,因为OA=OD,AB平行DC,角B=90,则OF是梯形的中位线,所以OF=(AB+DC)/2=AD/2,所以OA=OD=OF,F在圆上,且OF垂直BC,所以BC与圆O相切

如图,已知AB是圆O的直径,DA垂直AB于A,且DA平行BC∠COD=90° 求证DC是圆O切线

证明:延长DO交CB的延长线于点E,过O作OF⊥DC于F∵AD切圆O于A∴∠DAO=90∵AD∥BC∴∠DAO=∠EBO=90,∠E=∠DAO∵OA=OB∴△AOD≌△BOE(AAS)∴OD=OE∵∠

已知圆O中,弦AB平行CF,在CF的延长线上,DA交圆O于E,试说明AD乘EC等于DC乘BC

由于AB//CF,所以∠BAD=∠CDA,又∠BAD=∠BCE,所以∠CDA=∠BCE另外,∠CAD=∠CBE所以△CAD∽△EBC则有:DC/AD=CE/BC即有:AD*CE=DC*BC

一数学问题:已知△ABC中,AB=AC,圆O是△ABC的外接圆,D是弧AB上一点,连DA、DB、DC.若角BAC=60°

DC=AD+BD证明:延长AD至E使DE=DB,连接EB∵⊿ABC是有一个角为60º的等腰三角形∴⊿ABC是等边三角形∴∠ABC=60º∠ACB=60º∠EDB=∠ACB

如图,已知AB是圆O的直径,AB=10,点C,D在圆O上,DC平分∠ACB,∠EAC=∠D.

这里同初三滴~刚考完期末1.证明:设DC与AB的交点为F连接BD,由题可知:∠BDA=∠BCA=90°∵∠BCD=∠ACD=45°∴BD=AD,∠DBA=∠DAB=45°由∠DBA=∠ACD=45°∠

AB是圆O的直径AB=6角CAD=30度,求弦长DC

连接OC,OD∵∠CAD=30°∴∠COD=30°∵OC=OD∴△OCD是等边三角形∴CD=1/2AB=3

已知AB是圆心O的直径,BC是圆心O的切线,切点为B,OC平行弦AD,求DC是圆心O的切线

连DO∴∠DOC=∠ADO=∠DAO=∠COB又∵DO=BO,OC=OC∴△DOC≌△BOC∴∠ODC=∠OBC=90°∴DC是切线证毕

如图所示,已知:AB是圆O的直径,弦CD垂直AB于点E,点G是弧AC上任一点,AG,DC的延长线

连接GB,因为AB垂直于CD,CE=ED,所以BCD是等腰三角形=>BC=BD.所以,角CGB=角BGD.因为AB是直径,所以角AGB=角FGB=90.所以,角AGB-角BGD=角FGB-角CGB=》

一道初三关于圆的题如图,已知AB是半圆O的直径,D是AB延长线上的一点,AE⊥DC,交DC的延长线于点E,交半圆O于点F

证明:(1)连接OC,BF∵AB是直径∴∠AFB=90°∵C是弧BF的中点∴OC⊥BF∵AE⊥CD∴∠OCD=90°∴DE是⊙O的切线(2)∵∠D=30°∴∠COD=60°∴∠OAC=30°,∠CAE

已知AB是圆O的直径,BC是圆O的切线,切点为B,OC平行于AD,求证DC是圆O的切线

OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则

AB为圆O的直径,弦DA、BC的延长线交于点P.求证:BC=DC.

证明如下:连结AC.∵AB是直径,∴AC⊥CB.∵BC=PC,∴RT⊿ACB≌RT⊿ACP(RT⊿即直角三角形).∴AB=AP.且∠P=∠B.又∵∠D=∠B(同弧所对圆周角相等)∴∠P=∠D,故⊿PC

AB是圆O的直径,DA垂直AB于A,DA平行BC,∠COD=90°,求证:DC是圆O的切线

设:切与G点.∵三角形OAD=OGD,OBC=OGC(各角的互补互余可推出)∴OG=OA=OB=R.

如图,已知AB是圆O的直径,点D在AB的延长线上,且AC=CD,点C在圆O上,角CAB= 30度,求证:DC是圆O的切线

∵AC=CD∴∠CAB=∠CDB=30°连接OC∵OA=OC∴∠CAB=∠OCA=30°∴∠COD=60°∴∠OCD=90°C在圆O上∴DC是圆O的切线

已知:如图,梯形ABCD中,AB∥DC,E是腰DA的中点,且AB+DC=BC,

证明:延长BE交CD的延长线于F.∵AB∥CD,∴∠DFE=∠ABE,∠FDE=∠A.又E为DA的中点,∴△ABE≌△DFE.∴AB=DF,EF=EB.∵BC=DC+AB,CF=DF+DC,∴BC=C

已知AB是直径,BC是⊙O的切线,切点为AB,OC平行于弦AD,求证:DC是⊙O的切线

连接OD.OC平行于弦AD得COD=ODA==DAO=COB又OC=OC,OB=OD故三角形COD和COB全等,故CDO=CBO=90°.故为切线.

如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,求角BOD的度数

120度直径AB对应的弧度为180度,BC=CD=DA,则角AOD=角DOC=角COB=60度所以角BOD=120度

AB是⊙O的直径,BC、CD、DA是圆⊙的弦,且BC=CD=DA,求角BOD的度数.

因为BC=DA所以ABCD为等腰梯形.∠ODB=∠OBD=∠CDB=∠CBD所以△OBD≌△CBD所以△OAD为等边三角形.角BOD=120度

(2013•湖南模拟)如图所示,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,

(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC∵AB是圆O的直径,∴BC⊥AC∵DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,

已知:AB为⊙O的直径,AC平分∠DAB,AD⊥DC于D,求证:DC是⊙O的切线.

证明:连接OC;∵AC平分∠DAB,∴∠DAC=∠CAO;∵AO=OC,∴∠CAO=∠ACO,∴∠DAC=∠ACO,∴DA∥CO;∵AD⊥DC,∴CO⊥DC,∴DC为⊙O切线.