已知ab是圆o的直径DA,DC分别是圆O的切线,点AC是切点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:05:37
过O作BC的垂线交于F,因为OA=OD,AB平行DC,角B=90,则OF是梯形的中位线,所以OF=(AB+DC)/2=AD/2,所以OA=OD=OF,F在圆上,且OF垂直BC,所以BC与圆O相切
证明:延长DO交CB的延长线于点E,过O作OF⊥DC于F∵AD切圆O于A∴∠DAO=90∵AD∥BC∴∠DAO=∠EBO=90,∠E=∠DAO∵OA=OB∴△AOD≌△BOE(AAS)∴OD=OE∵∠
由于AB//CF,所以∠BAD=∠CDA,又∠BAD=∠BCE,所以∠CDA=∠BCE另外,∠CAD=∠CBE所以△CAD∽△EBC则有:DC/AD=CE/BC即有:AD*CE=DC*BC
DC=AD+BD证明:延长AD至E使DE=DB,连接EB∵⊿ABC是有一个角为60º的等腰三角形∴⊿ABC是等边三角形∴∠ABC=60º∠ACB=60º∠EDB=∠ACB
这里同初三滴~刚考完期末1.证明:设DC与AB的交点为F连接BD,由题可知:∠BDA=∠BCA=90°∵∠BCD=∠ACD=45°∴BD=AD,∠DBA=∠DAB=45°由∠DBA=∠ACD=45°∠
连接OC,OD∵∠CAD=30°∴∠COD=30°∵OC=OD∴△OCD是等边三角形∴CD=1/2AB=3
连DO∴∠DOC=∠ADO=∠DAO=∠COB又∵DO=BO,OC=OC∴△DOC≌△BOC∴∠ODC=∠OBC=90°∴DC是切线证毕
连接GB,因为AB垂直于CD,CE=ED,所以BCD是等腰三角形=>BC=BD.所以,角CGB=角BGD.因为AB是直径,所以角AGB=角FGB=90.所以,角AGB-角BGD=角FGB-角CGB=》
证明:(1)连接OC,BF∵AB是直径∴∠AFB=90°∵C是弧BF的中点∴OC⊥BF∵AE⊥CD∴∠OCD=90°∴DE是⊙O的切线(2)∵∠D=30°∴∠COD=60°∴∠OAC=30°,∠CAE
OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则
证明如下:连结AC.∵AB是直径,∴AC⊥CB.∵BC=PC,∴RT⊿ACB≌RT⊿ACP(RT⊿即直角三角形).∴AB=AP.且∠P=∠B.又∵∠D=∠B(同弧所对圆周角相等)∴∠P=∠D,故⊿PC
设:切与G点.∵三角形OAD=OGD,OBC=OGC(各角的互补互余可推出)∴OG=OA=OB=R.
因为AB是圆O的直径,所以角ACB=90°!
∵AC=CD∴∠CAB=∠CDB=30°连接OC∵OA=OC∴∠CAB=∠OCA=30°∴∠COD=60°∴∠OCD=90°C在圆O上∴DC是圆O的切线
证明:延长BE交CD的延长线于F.∵AB∥CD,∴∠DFE=∠ABE,∠FDE=∠A.又E为DA的中点,∴△ABE≌△DFE.∴AB=DF,EF=EB.∵BC=DC+AB,CF=DF+DC,∴BC=C
连接OD.OC平行于弦AD得COD=ODA==DAO=COB又OC=OC,OB=OD故三角形COD和COB全等,故CDO=CBO=90°.故为切线.
120度直径AB对应的弧度为180度,BC=CD=DA,则角AOD=角DOC=角COB=60度所以角BOD=120度
因为BC=DA所以ABCD为等腰梯形.∠ODB=∠OBD=∠CDB=∠CBD所以△OBD≌△CBD所以△OAD为等边三角形.角BOD=120度
(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC∵AB是圆O的直径,∴BC⊥AC∵DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,
证明:连接OC;∵AC平分∠DAB,∴∠DAC=∠CAO;∵AO=OC,∴∠CAO=∠ACO,∴∠DAC=∠ACO,∴DA∥CO;∵AD⊥DC,∴CO⊥DC,∴DC为⊙O切线.