已知ab是圆o的直径,点c,d
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:36:07
连接OC、BC,由题意可知,BC是Rt△OPC的斜边OP上的中线,所以BC=OB=OC,则△OBC是等边三角形,∠CBO=∠COB=60°,所以在Rt△ABC和Rt△OPC中,∠CAB=∠CPO=90
连接OC因为OA=OC所以∠A=∠C因为OD//AC所以∠BOD=∠A(两直线平行,同位角相等)所以∠COD=∠C(两直线平行,内错角相等)所以∠BOD=∠COD所以弧BD=弧CD
设DE=X,则CE=3X因为弦的垂直平分线经过圆心所以CD是直径所以AE=BE=AB/2=3因为AE^2=CE*DE所以3X^2=9所以X=√3所以CD=4X=4√3即圆O的半径是4√3
(1)∵AD⊥BC,∴CD=BD,∴CE=BE,∵CO=BO,∴△OCE≌△OEB,∴∠OBE=∴BE与圆O相切.(2)连接BC,AB是直径,∠ACB=90°.sin∠ABC=
希望你看得懂,按说明画一下比较好了解MC⊥AB⊥ND>>MC平行ND延伸MC交圆O於E>>ME平行ND从E做直径EF,则角NME=角MEF因为OME为等腰三角延伸ND交圆O於F’,则角NME=角MNF
这里同初三滴~刚考完期末1.证明:设DC与AB的交点为F连接BD,由题可知:∠BDA=∠BCA=90°∵∠BCD=∠ACD=45°∴BD=AD,∠DBA=∠DAB=45°由∠DBA=∠ACD=45°∠
话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B
(1)因为AB是直径,所以角ACB是90度,又因为BC=1/2AB=3(直角边是斜边的一半),所以角BAC=30度sin30度=1/2,sin角BAC的值为1/2(2)因为OE垂直AC,O为AB中点,
证明:延长CD交圆O于H点,连接AH∵CD垂直圆O的直径AB即CH垂直圆O的直径AB∴弧AC=弧AH(垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧)从而∠ACH=∠AHC①又∠AFC=∠AHC(
延长CD交圆O于H点,连接AH∵CD垂直圆O的直径AB即CH垂直圆O的直径AB∴弧AC=弧AH 从而∠ACH=∠AHC 又∠AFC=∠AHC由①②得∠ACH=∠AFC即∠AFC=∠
1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方
①若C在OA上②若C在OB上设CO为X,则AC为6-x同理:CO=X=3在Rt△DCO中∵AO=r=6∴AC=AO+OC∴AC=A0+OC=3+6(3√3)²+x²=36=927+
因为oc=ob所以∠ocb=obc=70又因为cd与圆o相切所以∠ocd=90所以∠bcd=90-70=20所以∠d=70-20=50
因为AB是圆O的直径,所以角ACB=90°!
∵AC=CD∴∠CAB=∠CDB=30°连接OC∵OA=OC∴∠CAB=∠OCA=30°∴∠COD=60°∴∠OCD=90°C在圆O上∴DC是圆O的切线
1.弧CB=弧CD,CB=CD∠CAE=∠CAF,CF⊥AB于点F,∠CFA=90°,CE⊥AD的延长线于点E,∠CEA=90°,∠ACE=90°-∠CAE,∠ACF=90°-∠CAF∠ACE=∠AC
在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A
∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;