已知ab是圆o的直径,P 是AB上一点,且PB平分角CPD.求证:PC=PD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:33:41
已知ab是圆o的直径,P 是AB上一点,且PB平分角CPD.求证:PC=PD
已知AB是圆O的直径 点P是AB延长线上的一个动点过点P做圆O的切线,切点为C,∠APC的平分线交AC于点D 则∠CDP

连接OC、BC,由题意可知,BC是Rt△OPC的斜边OP上的中线,所以BC=OB=OC,则△OBC是等边三角形,∠CBO=∠COB=60°,所以在Rt△ABC和Rt△OPC中,∠CAB=∠CPO=90

如图,AB是圆O的直径,弦CD交AB于点p,角APD=60°

过O点做OE垂直CD于E所以OE垂直平分CD因为AP=5,BP=1所以AB=6=直径,即半径=3所以OP=OB-BP=3-1=2因为角APD=60度,三角型OPE是直角三角型所以EO=根号3在三角型O

已知PA⊥圆o所在的平面,AB是圆o的直径,AB=2,C是圆

解题思路:线面关系解题过程:见附件最终答案:略

已知AB是圆O的直径,P是半径OA上一点,C是圆O上一点,求证:PA

AB是直径,P是OA上一点说明p在离A近的那段半径上所以PB>PA而C是圆O上一点连接CA,看三角形OAC是个直角三角形证明PC>PA

如图,ab是圆o的直径,弦cd⊥ab于h,p是ab延长线上一点

∠AOD=2∠AQD=∠CQD所以∠EOD=∠PQE,又∠OED=∠QEP所以∠ODE=∠QPE,即∠OPC=∠ODQ再问:∠AOD=2∠AQD=∠CQD为什么2∠AQD=∠CQD再答:弧CAD=2弧

如图,AB是圆O的直径,弦CD⊥AB于P.

1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√

如图,AB是圆O的直径,弦CD⊥AB于P,已知CD=8,∠B=30°,求元O的直径

连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30

已知圆O中.AB是直径.点P在AB上.PB平分角CPD.求.PC等于PD

过O作OE⊥PC于E,过O作OF⊥PD于F,∵PB平分∠CPD∴∠EPO=∠FPO,∠OFP=∠OEP,OP=OP∴△OPF≌△OPE∴OE=OF,PE=PF根据垂径定理,知CE=DF∵PE=PF∴C

已知如图AB是圆O的直径,点P为BA延长线上的一点.

第一问:1)因为DC是圆O的切线,所以∠DCB=∠CAB2)因为AB是直径,所以∠BDC=∠BCA=90°3)由1)、2)可知△BCD相似于△BAC,于是BC/BA=BD/BC,即BC^2=BD*BA

如图,AB是圆O的直径,点P是弧AB的中点

先自己画个图,标准点,再看题目

圆的作业题.1.已知:AB是圆O的直径,P是圆O外一点,PA垂直AB,弦BC//OP,判断PC是否为圆O的切线,说明理由

1.PC是圆O的切线因为BC//OP所以角AOP=角OBC,角POC=角OCB因为OB=OC所以角OBC=角OCB因为角AOP=角OBC,角POC=角OCB所以角AOP=角POC因为OA=OC,OP=

AB是圆O的直径,弦CD垂直AB于点P,CD=8,AP:PB=1:4.求直径AB的长{详细解释}

设AP=x,所以PB=4xAO=(AP+PB)/2=2.5xPO=AO-AP=1.5x因为CD=8所以CP=4AO=CO=2.5x所以CP^2+OP^2=OC^2所以4^2+(1.5x)^2=(2.5

已知ab是圆o的直径,p为ab上一点,c,d为圆上两点在ab同侧,且∠cpa=∠dpb,求证:c,d、p、o四点共圆

已知AB是圆O的直径,P为AB上一点,C,D为圆上两点在AB同侧,且∠CPA=∠DPB,求证:CDPO四点共圆延长直径AB,延长CD,相交于S.延长CP交圆O于M.延长DP交圆O于N.因为AB是直径,

AB是圆O的直径,弦CD垂直AB于P,若AP:PB=1:4,CD=8,求直径AB的长

由题知;AB是圆O的直径,弦CD垂直AB于P,连接O与C,若AP:PB=1:4,设AP=m,PB=4m所以OC=OA=OB=(OA+OB)/2=(AB)/2=5m/2PO=OA-AP=5m/2-m=3

AB是圆O的直径

解题思路:连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的

已知:AB是圆O的直径,弦CD⊥AB于点G,E是直径AB上一点,直线DE交圆O于点F,

连结AD则∠ADC=∠AGCAC=AD,所以∠ACD=∠ADCCF=AF,所以∠ACD=∠CAF所以∠ADC=∠CAF所以∠AGC=∠CAF所以,CG=AC