已知ab是圆o上的两点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 02:42:37
第一题:连接AC∠ABC=∠EDC---同一圆弧的圆周角相等.因为cb=cd,cf⊥ab于f,ce⊥ad交ad的延长线于点eDE=DC*COS∠CDEBF=BC*COS∠ABC所以DE=BF(2)证明
如图AB = 50, O1C = 7(圆O1的半径), O2D = 20(圆02 的半径)则0102的距离的平
1)证明:∵AC=CD\x0d∴弧AC与弧CD相等,\x0d∴角ABC=角CBD又∵OC=OB∴角OBC=角OCB\x0d∴角OCB=角CBD∴OC//BD(2)∵OC//BD不妨设平行线OC与BD间
证明:连接AD∵OA=OD∴∠OAD=∠ODA∵AC//OD∴∠ODA=∠DAC∴∠OAD(∠BAC)=∠DAC∴弧CD=弧BD【同圆内相等圆周角所对的弧相等】2.已知弧CD=弧BD,求证AC//OD
∵CE=CF,∠CAE=∠CAB∴△CAE≌△CAF∵AB是⊙O的直径∴∠ACB=90°∵∠DAB=60°∴∠CAB=30°,AB=6∴BC=3∵CF⊥AB于点F∴∠FCB=30°
过点P作PD⊥BQ,则可知ABPD为矩形,BD=AP=1PD=ABQD=BQ-BD=-4-1=3由题可知PC=AP=1CQ=BQ=4则PQ=4+1=5在Rt△PDQ中,PD=PQ-QD=5-3则PD=
图在哪里!再问:不用了,找到答案了!!!
显然有:OA=OB,∴∠OAC=∠OBD.∵弧AE=弧BF,∴∠AOC=∠BOD.由∠AOC=∠BOD、∠OAC=∠OBD、OA=OB,得:△OAC≌△OBD,∴AC=BD.
建立坐标系如图,则三个点的坐标分别为A(-r,0),B(r,0),C(r/2,(根号3)*r/2),设D的坐标为(m,n)则建立方程x*(-r,0)+2x*(-r/2,(根号3)*r/2)=(m-r/
由于图我没看见所以也不知道哪条线连没连你就自己对着看吧连接点O和点C点B和点D交与H设AD=2a∵BC=DC且OC为半径∴OC⊥BD与H且H为BD中点∵O为AB中点∴OH‖AD且OH=1/2AD=a∵
【标准解答】连接AD,CO,AD和CO相交于E因为AC=CD,AO=DO所以四边形ACDO的对角线AD和CO互相垂直CE^2=AC^2-AE^2,EO^2=AO^2-AE^2,CE+EO=CO=2得A
题目是比较难,顺便提一下,这里⊙O是△PMN的旁切圆,如果改成⊙O是△PMN的内切圆,其它条件不变,结论也成立,而且是某年(记不清楚是哪年)的竞赛题.
显然有:OA=OB,∴∠OAC=∠OBD.∵弧AE=弧BF,∴∠AOC=∠BOD.由∠AOC=∠BOD、∠OAC=∠OBD、OA=OB,得:△OAC≌△OBD,∴AC=BD.
1.弧CB=弧CD,CB=CD∠CAE=∠CAF,CF⊥AB于点F,∠CFA=90°,CE⊥AD的延长线于点E,∠CEA=90°,∠ACE=90°-∠CAE,∠ACF=90°-∠CAF∠ACE=∠AC
已知AB是圆O的直径,P为AB上一点,C,D为圆上两点在AB同侧,且∠CPA=∠DPB,求证:CDPO四点共圆延长直径AB,延长CD,相交于S.延长CP交圆O于M.延长DP交圆O于N.因为AB是直径,
AOBC是菱形.证明:连OC∵C是AB^的中点∴∠AOC=∠BOC=1/2×120°=60°∵CO=BO(⊙O的半径),∴△OBC是等腰三角形∴OB=BC同理△OCA是等边三角形∴OA=AC又∵OA=
已知,AB为圆O的直径,以A为圆心,以AO为半径画弧,交圆O于C,D两点,试证明三角形BCD是等边三角形证明:连接AC、AD、OC、OD因为:AC=AD=OC=OD,所以△OAC、△OAD都是等边三角
符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60