已知ab是不相等的正数求证(a b)(a3 b3)(a2 b2)2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:54:51
已知ab是不相等的正数求证(a b)(a3 b3)(a2 b2)2
一道很有挑战性的题目已知a,b是不相等的正实数,求证:【(a^2)b+a+b^2】(ab^2+a^2+b)>(3ab)^

(a^2)b+a+b^2>=3((a^2)b*a*b^2)^(1/3)=3ab即:(a^2)b+a+b^2>=3ab-----------------------(1)(ab^2+a^2+b)>=3(

1.已知:a,b是正数,求证:a+b≥2根号下ab

a+b-2√ab=(√a)^2+(√b)^2-2*(√a)*(√b)=[(√a)-(√b)]^2≥0所以a+b≥2√ab第二题看不懂,好乱再问:嗯,有点乱,谢谢.再答:希望能帮上你^^

已知a,b都是正数,且a不等于b,求证a+b分之2ab

a+b-2根号ab=(根号a-根号b)^2>0所以a+b>2根号ab所以2根号ab/(a+b)

已知a,b,c是正数,且ab+bc+ac=1求证a+b+c大于等于根号3

(a+b+c)2=a2+b2+c2+2ab+2bc+2ca=1/2*(a2+b2+b2+c2+c2+a2)+ab+2bc+2ca]>=1/2*(2ab+2bc+2ca)+2ab+2bc+2ca=3ab

已知a,b是不相等的两个正数,求证:(a+b)(a3+b3)>(a2+b2)^2.

证明:(a+b)(a3+b3)>(a2+b2)^2a4+ab3+ba3+b4>a4+2a2b2+b4ab3+ba3>2a2b2ab(a2+b2)>2a2b2ab为正数所以a2+b2>2ab(a-b)^

已知函数f(x)=lgx,求证:对于两个任意不相等的正数x1,x2不等式f(x1)+f(x2)

f(x1)+f(x2)=lgx1+lgx2=lg(x1*x2)2f((x1+x2)/2)=2lg[(x1+x2)/2]=lg{[(x1+x2)/2]^}因为x1,x2都正数,且不等,基本不等式:√(x

已知正数ab满足ab=1,求证a2+b2≥a+b

a²+b²-(a+b)=a²+b²+2ab-(a+b)-2ab=(a+b)²-(a+b)-2=(a+b-2)(a+b+1)a、b均为正,由均值不等式得

(1)已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca;

证明:(1)要证a2+b2+c2>ab+bc+ca,只需证2(a2+b2+c2)>2(ab+bc+ca)即证(a+b)2+(b+c)2+(a+c)2>0,因为a,b,c是不全相等的实数,所以(a+b)

已知m,n互为不相等的正数,m3-n3=m2-n2,求证1

证明:因为m³-n³=(m-n)(m²+mn+n²)m²-n²=(m-n)(m+n)所以有(m-n)(m²+mn+n²)

已知ab是不相等的两个正数,求证(a+b)(a3+b3)>(a2+b2)2

左面=a^4+b^4+ab^3+a^3b,右面=a^4+b^4+2a^2b^2,因为ab^3+a^3b>2a^2b^2(a+b≥2√ab,a=b时相等),所以,

两个不相等的正数满足a+b=2,ab=t-1,设S=(a-b)2,则S关于t的函数图像是

S=(a-b)^2=(a+b)^2-4ab=4-4(t-1)=4t+8由于a、b是正数,所以t-1>0,t>1所以S>12,是射线选A

已知a,b,c是正数,且ab+bc+ca=1,求证:a+b+c>=根3

a^2+b^2≥2ab,b^2+c^2≥2bc,a^2+c^2≥2aca^2+b^2+b^2+c^2+a^2+c^2≥2ab+2bc+2aca^2+b^2+c^2≥ab+bc+ac(a+b+c)^2=

已知a、b是不相等的正数,且a、x、y、b成等差数列,a、m、n、b成等比数列,则下列关系成立的是(  )

设a,x,y,b依次成等差数列的公差为d,则:x=a+d,y=a+2d,b=a+3d;a,m,n,b依次成等比数列的公比为q,则:m=aq,n=aq2,b=aq3,所以有a+3d=aq3得到3d=aq

已知a,b,c是不全相等的正数,求证:(ab+a+b+1)(ab+ac+bc+c2)>16abc.

证明:∵ab+a+b+1=(a+1)•(b+1),ab+ac+bc+c2=(a+c)•(b+c),∴(ab+a+b+1)(ab+ac+bc+c2)=(a+1)•(b+1)•(a+c)•(b+c),∵a

求一道数学题的解 已知a,b,c是不全等的正数,求证(ab+a+b+1)(ab+ac+bc+c*c)>16abc

a+b>=2[ab],ab+a+b+1>=ab+2[ab]+1>=([ab]+1)^2>=4[ab]……………………………一式ab+ac+bc+c*c=(a+c)*(b+c)>=4[ab]c……………

已知a,b,c是不全相等的正数,求证:lga+lgb+lgc

都是正数所以a+b>=2√abb+c>=2√bcc+a>=2√ca相乘(a+b)(b+c)(c+a)>=8√(a^2b^2c^2)即(a+b)(b+c)(c+a)>=8abc要取等号则上面三个式子的等

已知a,b,c是不全相等的正数,求证:(ab+a+b+1)(ab+ac+bc+c^2)>16abc.

ab+a+b+1>=4*(a*b*a*b*1)^1/4等号当且仅当a=b=1时成立ab+ac+bc+c*c>=4*(ab*ac*bc*c*c)^1/4等号当且仅当a=b=c时成立(ab+a+b+1)(

已知a,b,c是不全相等的正数,求证(ab+a+b+1)(ab+ac+bc+c*c)大于16abc

(ab+a+b+1)(ab+ac+bc+c^2)=(a+1)(b+1)(a+c)(b+c)>=2√(a*1)*2sqrt(b*1)*2√(a*c)*2√(b*c)=16√(a*b*a*c*b*c)=1

1.已知a,b,c是不全相等的正数,求证a+b+c>√ab +√bc+√ca 2.求证a^2+b^2+c^2+d^2>=

a+b+c=1/2(a+b)+1/2(b+c)+1/2(c+a)>=1/2*2√ab+1/2*2√bc+1/2*2√ca=√ab+√bc+√ca由于不全相等,所以不能取等号.第2小题差不多

已知a,b是不相等的正数,且a2-a+b2-b+ab=0,则a+b的取值范围是(  )

由题意可得a,b是不相等的正数,a2+ab+b2=a+b,∴(a+b)2-(a+b)=ab,又0<ab<(a+b)24,∴0<(a+b)2-(a+b)<(a+b)24,解得1<a+b<43,故选:B.