已知AB为n阶方阵,A不等于0,AB=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:32:32
A的行列式不等于0.则A可逆所以r(A)=n,那么r(A*)=n所以A*x=0只有0解
A可逆,A^(-1)ABA=BA,因此AB与BA相似
证明:必要性.因为存在一个非零矩阵B,使得AB=O所以B的列向量都是AX=0的解向量所以AX=0有非零解所以|A|=0.充分性.因为|A|=0,所以AX=0有非零解b1,...,bs令B=(b1,..
用反证法.若R(A)=N,则A可逆.A^(-1)[AB]=A^(-1)*0=0,又A^(-1)[AB]=B,因此,B=0.与B不等于0矛盾.故,R(A)
原式右乘B的逆得A+B=-A^2*(B的逆)原式写成A(A+B)=-B^2……(1)两边同时左乘-B^(-2)得A+B可逆,其逆为-B^(-2)A
因为B≠O(矩阵),所以存在B的一列b≠0(列向量)因为AB=0,所以Ab=0即齐次线性方程组AX=0存在非零解,所以R(A)
用正定定义与矩阵运算证明,如图.经济数学团队帮你解答.请及时评价.
A+B+AB=0(I+A)(I+B)=-I即I+A可逆,逆矩阵为-(I+B).因此(I+B)(I+A)=-I即A+B+BA=0所以AB=BA
选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为
A,B为n阶方阵,且AB=0,其中A不等于0,B=0不成立(A-B)^2=A^2+B^2也不成立(A-B)^2=A^2+B^2-AB-BA,-AB-BA这两项是不能随便丢弃的,并且很多时候AB不等于B
假设R(A)=N那么A为满秩矩阵,那么A可逆,A*A的逆矩阵*B=0,所以B=0,与条件矛盾.所以R(A)〈N
由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确
因为AB=0,则B的列向量都是齐次线性方程组AX=0的解.(知识点)又因为B不等于0,所以B至少有一列是非零列向量,这个列向量是AX=0的解.即AX=0有非零解,故A的行列式等于0.(知识点,A为方阵
AB=0,则B的列向量都是Ax=0的解因为B≠0,所以Ax=0有非零解,所以|A|=0.同理.AB=AC即A(B-C)=0若能推出B=C则Ax=0只有零解,所以|A|≠0|A|≠0r(A)=nAx=0
因为AB=0所以B的列向量都是AX=0的解又因为B≠0,所以AX=0有非零解.所以r(A)
又是没悬赏的哈AB=0说明B的列向量都是齐次线性方程组Ax=0的解而B≠0说明Ax=0有非零解所以|A|=0,即A不可逆
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们
证:【单位阵全用E表示】1.用分析法:(A-B)[(A+B)*]=[(A+B)*](A-B)←【∵|A+B|!=0,∴A+B可逆】(A+B)(A-B)[(A+B)*](A+B)=(A+B)[(A+B)
不一定成立举反例就行了