已知abccd是ab边上的中线,且cd等于ab等于bd,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 18:32:39
证明:∵BD+AD>AB,CD+AD>AC,∴BD+AD+CD+AD>AB+AC.∵AD是BC边上的中线,BD=CD,∴AD+BD>12(AB+AC).
如图,延长AD至E,使DE=AD,∵AD是△ABC中BC边上的中线,∴BD=CD,在△ABD和△ECD中,AD=DE∠ADB=∠EDCBD=CD,∴△ABD≌△ECD(SAS),∴CE=AB=3,∵A
2、△ABC是等边三角形,AD是BC边上的高,所以角DAE=30度,CE=CD,角E=角CDE,角DCE=120度,所以角E=30度,角DAE=角E=30度,所以AD=DE
守候丶拐弯处,证明:∵AE⊥BC,根据勾股定理可得:AB²=BE²+AE²AC²=CE²+AE²∴AB²-AC²=BE&
AB=AC,D、E分别是中点所以AD=AE又AB=AC共用角A所以△ABD≌△ACE,所以∠ABD=∠ACE,又△ABC等腰,∠ABC=∠ACB,所以∠DBC=∠ECB,所以△OBC是等腰三角形,所以
证明:∵AM是BC边上的中线∴BM=CM∵在△ABM中:AM+BM>AB;在△ACM中:AM+CM>AC∴2AM+BM+CM>AB+AC∴2AM+2BM>AB+AC∴AM>1/2(AB+AC)-BM这
因为cd为ab中线,所以ad=bd=cd=1/2ab.又ab=2ac,所以ad=bd=cd=ac,所以三角形acd是等边三角形
证明:∵AB=AC∴∠ABC=∠ACB∵CD、BE是AB、AC边上的中线∴BD=AB/2,CE=AC/2∴BD=CE∵BC=BC∴△BCE≌△CBD(SAS)∴∠CBE=∠BCD∴OB=OC∴等腰△O
(1)证明:∵∠CHB=90°∴∠BCH+∠B=90°∵∠BCH+ACH=90°∴∠ACH=∠B∵∠ACB=90°,AE=BE∴CE=BE∴∠B=∠BCE∴∠BCE=∠ACH∵∠ACF=∠BCF∴∠H
连接PC∵AB=AC,AD是BC边上的中线∴∠BAP=∠CAP∴△BAP≌△CAP∴PB=PC,∠ABP=∠ACP∵CF‖AB∴∠F=∠ABP∴∠F=∠ACP∵∠EPC=∠CPF∴△EPC∽△CPF∴
证明:AB=AC,AE为中线,则:∠BAE=∠CAE=(1/2)∠BAC;又∠CAF=(1/2)∠CAD.故:∠CAE+∠CAF=(1/2)(∠BAC+∠CAD)=(1/2)*180度=90度.所以,
延长AD到E,使AD=DE,连接CE,如图,∵AD是△ABC中BC边上的中线,∴BD=CD,又AD=DE,∠ADB=∠CDE,∴△ABD≌△ECD,∴AB=CE,在△ACE中,AC-CE<AE<AC+
三角形ABC的面积=AB上的高*AB/2=三角形ABC的面积+三角形ADC的面积=2倍三角形ADC的面积(因为D为BC中点啊)=AC*AC边上的高(这里AC边上的高是指三角形ADC中)你这道题求的是三
将ad延长到I使得:AD=DI.连接CI很容易看出三角形ADB全等于IDC,所以角BAD等于角DIC.又因为AB大于AC,所以BC大于AC.所以角DAC大于DIC,既角BAD小于DAC证明玩了.
根据题可以看出三角形ABC是钝角三角形,且角B是钝角.因为CB为三角形ADC的中线,所以AB=BD.因为AD=10,所以AB+BD=10,所以DB=AD除以2=5.因为CD是三角形ABC的AB边上的高
中线的题,先倍长中线延长AD到E,使DE=AD,连结BE∵BD=DC,∠BDE=∠ADC∴△BDE≌△CDA∴BE=AC在△ABE中∵AE
(1)因为AB=AC所以三角形ABC是以BC为底的等腰三角形因为AD是BC边上的中线所以角BAO=角CAO因为AB=AC,AO=AO所以三角形BAO全等三角形CAO所以OB=OC因为AB的垂直平分线交
证明:∵AD⊥BC,∴∠ADB=90°,∵CE是AB边上的中线,∴E是AB的中点,∴DE=12AB(直角三角形斜边上的中线等于斜边的一半),又∵AE=12AB,∴AE=DE,∵AE=CD,∴DE=CD
因为AD为BD中线,所以BC=2BD=6cm所以AB+AC=周长-BC2AB=16-3=13cmAB=6.5cm
图中:BC>AC,依照这个做的1、∵M是Rt△ABC斜边AB的中点∴∠B=∠BCM∵CH⊥AB∴∠ACH=∠B(同为∠BCH的余角)∴∠ACH=∠BCM∵CG平分∠ACB∴∠ACG=∠BCG∴∠ACG