已知ab,cd是圆o的两条弦,直线ab,cd互相垂直,垂足为e,连接ac
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:33:59
参考:如图所示,已知AB是圆O的直径,AP是圆O的切线,A是切点,BP与圆O交于点C,若D为AD中点,求证:直线CD是圆O的切线证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对
在圆上的两条弦是相等的存在几种情况,1;AB//CD,2;AB与CD是垂直的关系,3;就是不平行,不垂直,前两种情况很好证明的,后面的稍微麻烦一点就补多说了再问:告诉我过程好马想不明白啊图那个网址上有
∵弦AB=CD∴弧AB=弧CD∴∠ACB=∠DBC弧AB+弧AD=弧CD+弧AD即弧BD=弧AC∴∠ABC=∠DCB∵∠ACB=∠DBC,AB=CD∴⊿ABC≌⊿DCB﹙AAS﹚
过O作OG⊥CD于G∵O为圆心,CD为弦,OG⊥CD∴CG=DG(弦的过圆心垂线平分弦)又∵AE⊥CD,BF⊥CD∴AE‖BF∴OA/OB=EG/FG(相似)又∵OA=OB∴EG=FG又∵CG=DG∴
边边边,证三角形ocd和三角形oab全等,然后就是全等的两三角形相等的变上的高相等,所以og=of如果还不会在线问我,我告诉你更易懂的
连接OD因为∠AOC=∠EOB,所以弧AC=弧EB因为AB//CD,所以∠EOB=∠ECD因为∠ECD=1/2∠EOD,所以∠EOB=∠BOD,所以弧EB=弧DB所以弧EB=弧AC=弧BD
证明:连OE,OF因为AB、CD是⊙O的两条弦,E、F分别是AB、CD的中点,所以OE⊥AB,OF⊥CD所以OE=OF(同圆中,相等的弦所对的弦心距相等)∠AEO=90,∠CFO=90所以∠OEF=∠
连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30
作OF垂直AB,则AB=BF=8.5,EF就是点O到CD的距离为4.5设秋千的固定点为A,最低点为B,最高点为C、D,连接CD交AB于O则OC=OD=4m,OB=1.3-0.3=1m,设秋千绳长为x,
1.证明:连接OC则OA=OC,OC⊥CD∴∠OAC=∠OCA∵AC平分∠DAO∴∠OCA=∠OAC=∠CAD∴AD‖OC∴AD⊥CD2.连接BC∵∠DAC=30°∴∠BAC=30°∵AB是直径∴∠A
连接OA,OC,做OM⊥AB垂足为M,交CD于N,∵AB‖CD,∴ON⊥CD,∴AM=1/2AB=3,MN=1,在Rt⊿AOM中,OA=5,AM=3,∴有勾股定理得OM=4,∴ON=OM-MN=4-1
设AB与CD相交于E点,利用相交弦定理可得AE•EB=CE•ED,∴AE(6-AE)=(252)2,化为AE2-6AE+5=0,解得AE=5或1,取AE=5,则AC=AE2+CE2=52+(5)2=3
设AB与CD相较于G点,过圆心O做CD的垂线,使OH垂直于CD,则由相似定理GH/HE=GO/OA=GO/OB=HG/FH,所以HE=FH,又由于CH=DH,所以CE=DF自己画图慢慢体会吧,不知道你
AB等于CD,说明圆周ACB等于圆周CBD,即圆周AC等于圆周BD,得出角BAD等于角CDA,即三角形AED为等腰三角形,得解.
^2-(AB/2)^2=r^2-9r^2-(CD/2)^2=r^2-16根号(r^2-9)-根号(r^2-16)=1解得r=5
连结BC,AB、CD相交于点E,设AE=x∵直径AB垂直于弦CD,∴CE=12CD=5,且CE2=AE•BE,可得x(6-x)=5解之得x=5∵Rt△ACE中,AE=5,CE=5∴由勾股定理,得AC=
设AB与CD相交于E点,利用相交弦定理可得AE•EB=CE•ED,∴AE(6-AE)=(252)2,化为AE2-6AE+5=0,解得AE=5或1,取AE=5,则AC=AE2+CE2=52+(5)2=3
假设AB,CD相交于E,AB是线段CD的中垂线,根据垂径定理:AB是直径.R=AB/2=3,CE=CD/2=根号5,OE^2=R^2-CE^2=9-5=4,OE=2,AE=OA-OE=4-2=2,AC
分两种情况讨论:⑴当两条平行线AB、CD在圆心O点的同一侧时:过O点作CD、AB的垂线,垂足分别为E、F点,则EC=ED=4,FA=FB=3,连接OA、OC,则OA=OC=5,∴由勾股定理得:OE=3