已知A=,B为3阶非零矩阵,且满足AB=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:21:28
证明:由A^2-AB=3I得A(A-B)=3I等式两边取行列式得|A||A-B|=|3I|=3^3|I|=27.所以|A-B|≠0所以A-B可逆.注:已知条件给出了A可逆,实际上并不需要,反而可以证明
因为BA=0所以R(A)+R(B)=1当t≠6时,R(A)=2,故R(B)
C为3x2矩阵,这个是取头尾,只要相邻的两个数相等乘积就有意义
|AB|=|A||B|=2*3=6.
由AB=0,B是非零矩阵所以AX=0有非零解.所以|A|=0计算得|A|=a-17所以有a=17.
因为AB=BA所以(AB)^T=B^TA^T=BA=AB所以AB是对称矩阵.由A,B正定,存在可逆矩阵P,Q使A=P^TP,B=Q^TQ.故AB=P^TPQ^TQ而QABQ^-1=QP^TPQ^T=(
∵A(A-B)=A²-AB=E.∴A可逆,且A^(-1)=A-B,即有B=A-A^(-1).∴BA=A²-E=AB,则AB-BA+A=A.又∵A为N阶可逆矩阵,∴r(AB-BA+A
因为B为3阶非零矩阵,所以r(B)>=1.(*)又因为t不等于6,所以r(A)=2.由已知BA=0所以A的列向量都是BX=0的解所以r(A)=3-r(A)=3-2=1(**)综上有r(B)=1.
因为|A|=0所以r(A)再问:题目要求B是n阶矩阵,这里只证明了B可以是n×1矩阵呀?再答:令B的第1列为(k1,...,kn)^T,其余列都取0即可.
小问题1似乎是特征分解.[V,D]=eig(K);这样就可以得矩阵V和对角阵D,满足K*V=V*D再问:恩。。这样特征值对角阵的确可以求出来,变化向量P怎么求了呢再答:P不就是V么。。。。V是单位正交
因为AB=0;所以B的列向量均是线性方程组AX=0的解,根据解空间的理论,r(A)+r(B)=n;又因为A、B均为非零矩阵,因此r(A)>=1;r(B)>=1;所以r(A)
等式2A^-1B=B-4E两边左乘A得2B=AB-4A所以(A-2E)(B-4E)=8E所以A-2E可逆,且(A-2E)^-1=(1/8)(B-4E).因为2B=AB-4A所以A(B-4E)=2B(B
已知等式右乘A,得AB=B+3A,因此(A-E)B=3A,左乘(A-E)^-1,得B=3(A-E)^-1A.由A*可得A=2EA*^-1=20000200-202003/401/4因此(A-E)^-1
再问:谢谢啊!!网上的我都看不懂,看懂了你教的了。
解:相似矩阵的特征值相同所以B的特征值为2,3,3所以|B|=2*3*3=18所以|B^-1|=1/18.满意请采纳^_^再问:再问下,若A的特征改值为2,3,4.那么|B|=2*3*4么再答:是的方
A^-1=(1/|A|)A*需要乘行列式的倒数
我先告诉你AC=BC时C不可以轻易约掉因为可变为(A-B)C=0当A不等于B(即A-B不等于0),C不为0时(A-B)C也可以等于0举个例子当A-B={100;010;001}C={011;101;1
x=-3因为,B为3阶非零矩阵,所以|A|=0,得x=-3
B+E特征值为0+1,-2+1,3+1即:1,-1,4∴|B+E|=1×(-1)×4=-4
由A,B正交,所以有AA'=A'A=E,BB=B'B=E所以|A'(A+B)|=|A'A+A'B|=|E+A'B||B'(A+B)|=|B'A+B'B|=|B'A+E|=|(B'A+E)'|=|A'B