已知a1等于1,an 1-an

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:39:21
已知a1等于1,an 1-an
已知数列{an},an=2^n,则1/a1+1/a2+...+1/an等于多少?

原式=1/2+1/4+1/8+……+1/2^n=1/2*[1-(1/2)^n]/(1-1/2)=1-1/2^n再问:要详细步骤再答:等比求和

数列{an}中,a1=-2,an+1=1+an1−an,则a2010=(  )

由于a1=-2,an+1=1−an1+an∴a2=1+a11−a1=−13,a3=1+a21−a2=12,a4=1+a31−a3=3,a5=1+a41−a4=−2=a1∴数列{an}以4为周期的数列∴

已知数列{an}满足a1=2,an+1-an=an+1*an,那么a31等于

两边同除an*an+1得:1/an-1/an+1=11/an+1-1/an=-1,所以数列{1/an}为等差数列1/an=1/a1+(-1)*(n-1)1/a31=1/2+(-1)*301/a31=-

已知数列{an}中,a1=4,an=3a(n-1)-2(n大于等于2)

(1)an=3a(n-1)-2an-1=3(a(n-1)-1)(an-1)/(a(n-1)-1)=3(an-1)/(a1-1)=3^(n-1)an=1+3^n(2)1/an=1/(1+3^n)1/a1

已知等差数列{an},首项a1=1,公差d=3,若an=2014,则n等于(  )

∵首项a1=1,公差d=3,an=2014,∴2014=1+3(n-1),解得n=672.故选:C.

已知数列{an}中,a1=1,当n>等于2时,an+2SnSn-1=0

an+2Sn·S(n-1)=0(n≥2)Sn-S(n-1)=an所以Sn-S(n-1)+2Sn·S(n-1)=0(n≥2)两边同时除以Sn·S(n-1),得1/S(n-1)-1/sn+2=0即1/Sn

已知数列{an}中,a1=2,an+1=an+2n(n∈N+)则a10等于

由an+1=an+2n可以列出以下各式a10=a9+2x9a9=a8+2x8a8=a7+2x7..a3=a2+2x2a2=a1+2x1以上各式相加可得a10=a1+1x2+2x2+.+9x2a10=9

已知数列{an}的首项a1=1,且{an}满足an=n(n+an-1),其中n大于等于2,求{an}的通项

如果an=n(n+an-1)的an-1表示第n-1项所以an=n^2+nan-1所以an-nan-1=n^2an-1-(n-1)an-2=(n-1)^2an-2-(n-2)an-3=(n-2)^2..

若a1>0,a1≠1,an+1=2an1+an(n=1,2,…)

(1)证明:若an+1=an,即2an1+an=an,解得an=0或1.从而an=an-1=…a2=a1=0或1,与题设a1>0,a1≠1相矛盾,故an+1≠an成立.(2)由a1=12,得到a2=2

已知数列{an}中,a1=1,满足an+1=an+2n,n属于N*,则an等于

应该是A(n+1)=An+2n吧~~~=>a(n+1)-an=2n所以an-a(n-1)=2(n-1)a(n-1)-a(n-2)=2(n-2)...a2-a1=2*1把左边加起来,右边加起来得到an-

等差数列{an}中,已知a1=1/3,a2+a5=4,an=33,则n等于多少

不用对称设法也可.a(n)=1/3+(n-1)d,4=a(2)+a(5)=1/3+d+1/3+4d=2/3+5d,d=2/3.a(n)=1/3+2(n-1)/3,33=1/3+2(n-1)/3,99=

用降阶法计算行列式.-a1 a1 0 ...0 00 -a2 a2 ...0 0.0 0 0 ...-an an1 1

依次第二列加上第一列,第三列加上第二列...原式=-a100...00-a20...0.000...-an0123...nn+1所以原式=(n+1)*(-1)^n*a1*a2*...*an

已知数列{an}满足a1=2,an+1=2an/an+2,则an等于多少

a(n+1)=2a(n)/[a(n)+2],a(1)=2>0,由归纳法知a(n)>0.1/a(n+1)=[a(n)+2]/[2a(n)]=1/2+1/a(n),{1/a(n)}是首项为1/a(1)=1

已知数列{an}满足条件:a1=5,an=a1+a2+...a(n-1) n大于等于2,求数列{an}的通项公式

据题意:5+(n-1)*d=5*(n-1)+(1+2+···n-2)*d5+(n-1)*d=5n-5+{[(n-2)(n-1)]/2}*d5+n*d-d=5n-5+[(n^2)/2]*d-(3n/2)

已知数列(an)中,a1=1,n大于等于2时,an=an-1/3an+1+2,求通项an

a[n+1]=2an+3a[n-1]注:[]中的n+1、n-1均为下脚标.两边各加an得:a[n+1]+an=3an+3a[n-1]=3(an+a[n-1])令bn=an+a[n+1],则有:bn=3

已知数列{an}满足a1=2,an+1=1+an1−an(n∈N*),则a1a2a3…a2010的值为(  )

∵1=2,an+1=1+an1−an(n∈N*),∴a2=1+a11−a1=1+21−2=-3,a3=1+a21−a2=1−31+3=−12a4=1+a31−a3=1−121+12=13a5=1+a4

已知数列{an}满足an+1=an+n,a1等于1,则an=?

A2=A1+1A3=A2+2A4=A3+3.An=A(n-1)+(N-1)左式上下相加=右式上下相加An=A1+[1+2+3+...+(N-1)]An=1+[N(N-1)]/2

已知正数数列{an}中 an+1的平方分之一等于an平方分之一加三分之一 a1等于1 则a10等于?

a1=11/[a(n+1)]^2=1/(an)^2+1/31/[a(n+1)]^2-1/(an)^2=1/31/(an)^2-1/(a1)^2=(n-1)/31/(an)^2=(n+2)/3an=√[

已知等差数列{an}中,a1等于5,an等于95,n等于10,求s10

a10=a1+9d——》d=(a10-a1)/9=(95-5)/9=10,——》S10=na1+n(n-1)d/2=10*5+10*(10-1)*10/2=500.