已知a.b属于R,a² 2b²=6,求a b的最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:49:13
我补充一下因为a+b减去二倍根号ab等于(根号a+根号b)平方大于等于0所以a+b大于二倍根号a
(a+m)/(b+m)=[a+(a/b+(b-a)/b)m]/(b+m)=(a+am/b)/(b+m)+(b-a)/bm(b+m)=(a/b)(b+m)/(b+m)+(b-a)/bm(b+m)=a/b
ab=30-3a因为ab属于R开平方之后ab的平方是正数或者0所以30-3a的平方也是正数或者0a小于等于10b=(30-3a)/a或者a(3+b)=30由于a最大为10所以b大于等于0b的最小值为0
不一定要用均值不等式的,用均值不等式的方法楼上已经写了,再提供一个方法供你参考,ab(a+b)=16a,b属于R+,令ab=ma+b=n,则mn=16a,b是方程x^2-nx+m=0的两根.n^2≥4
a^2+b^2-ab-a-b+1=a^2/2-ab+b^2/2+a^2/2-a+1/2+b^2/2-b+1/2=(a-b)^2/2+(a-1)^2/2+(b-1)^2/2>=0当且仅当a=b=1时等号
等下再问:求证对任意正整数n>1有1/根号1加上1/根号2加到1/根号n>根号n
充分不必要
1+a+b=ab=2+2*根号2或t
证明:原不等式等价于:2a^2+2b^2-a-b-1/3>02(a^2-a/2+1/16)-1/8+2(b^2-b/2+1/16)-1/8+1/3>02(a-1/4)^2+2(b-1/4)^2+1/1
(a/√b+b/√a)-√a-√b=(a/√b-√b)+(b/√a-√a)通分,得=(a-b)/√b+(b-a)/√a=(a-b)/√b-(a-b)/√a=(a-b)[1/√b-1/√a]=[(a-b
可以先看集合A中的元素,谁能和0对应,分类:1)当a+b=0时,得b=-a,所以只能是b=1,b/a=a得a^2=1,d故a=-1,a=1(舍)2)当a=0时,有:a+b=b,b/a=1解得,a=0(
【反证法】.设m,n是方程两根,且|m|≥1.由韦达定理知,m+n=-a,mn=b.(1)|m|≥1.===>|mn|≥|n|.===>|b|≥|n|.(2).m=-(a+n).==>|a+n|=|m
a、b∈R,则依Cauchy不等式得6=a²+2b²=a²/1+b²/(1/2)≥(a+b)²/(1+1/2)→(a+b)²≤9→-3≤a+
|z+2|=|(a+2)+bi|=3即(a+2)²+b²=9是一个圆心为(-2,0)半径为3的圆然后求b-a的最大值一种方法是设a=3cosθ-2,b=3sinθb-a=3sinθ
(a-1)²+(b-1)²≥0所以a²+b²-2a-2b+2≥0即a²+b²≥2a+2b-2
(a^a*b^b)/(ab)^[(a+b)/2]=a^[(a-b)/2]*b^[(b-a)/2]=(a/b)^(a-b)/2当a小于b时,a/b小于1,(a^ab^b)/(ab)^[(a+b)/2]小
令x=a+bb=x-a所以a²+2(x-a)²=63a²-4ax+2x²-6=0a是实数则方程有解所以判别式大一等于016x²-24x²+7
当a=0时-4x+1=0x=1/4所以b=1/4a+b=1/4当a不等于0时因为关于x方程只有一个根所以判别式等于0(-4)²-4a=0所以a=4此时4x²-4x+1=0解得x=1
由均值不等式得:b²c²+c²a²≥2c²ab,c²a²+a²b²≥2a²bc,a²b&s
a^2+b^2≥2abb^2+1^2≥2b1^2+a^2≥2a相加得:2(a^2+b^2+1)≥2(ab+a+b)两边同除以2:a^2+b^2+1≥ab+a+b移项即得:a^2+b^2≥ab+a+b-