已知A,B是抛物线y^2=2px(p>0)的任意一条过焦点的弦,弦AB被焦点F
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 07:59:37
(1)证明:设A(x1,y1),B(x2,y2),A、B的中点为P(a,b),由已知得y1^2-y2^2=2px1-2px2,所以(y1+y2)(y1-y2)=2p(x1-x2),直线AB的斜率为(y
(1)采用逆推法设A、B的坐标分别为(a,-a^2/2)、(b,-b^2/2)AB的斜率为K=(-a^2/2+b^2/2)/(a-b)=-(a+b)/2当前只需要证明a+b为定值即可设PA、PB的斜率
1)设直线x=y/k-p/2,A(x1,y1),B(x2,y2)代入抛物线方程得y^2-2py/k+p^2=0∴y1*y2=p^2∴OA向量*OB向量=x1*x2+y1*y2=(y1)^2*(y2)^
我们之间拥有的这个惟一的世界里哈哈.我看见目光在男人们和女人们中间交换,嘴唇到躯体,而当我们分开,我想我被空中的一片高声恸哭
由2BF=AF+CF据抛物线的定义AF=x1+p/2,BF=x2+p/2,CF=x3+p/2易得2x2=x1+x3而y^2=2px所以2y2^2=y1^2+y3^2
互补说明两个倾斜角相加等于180°(两直线与x轴的成角),也就是说两个倾斜锐角相等,所以两条直线的斜率的绝对值相等.设中点为(x0,y0),则y0=(y1+y2)/2,x0=(x1+x2)/2.y1&
(1)x=0时,y=3y=-4x²+13/2·x+3=0得到x=2、-8/3∴A(0,3)B(2,0)(2)y=-4x²+13/2·x+3=3得到x1=0x2=13/8∴AP=x2
证:设定点M坐标为(m,n),动点A坐标(x1,y1),B坐标(x2,y2)抛物线上的点到焦点距离等于到准线距离,即:|AF|=x1+p/2,|MF|=m+p/2,|BF|=x2+p/2由|AF|、|
1.设直线AB的斜率为k(a为直线AB的倾斜角)当a=π/2时,AB垂直于x轴,x=p/2得y=±p所以AB的坐标分别为(p/2,p),(p/2,-p)y1*y2=-p^2,x1*x2=p^2/4当a
(2)②先求出顶点(2,-10),然后设(2-a,-10+√3a)代入解析式解方程即可(3)设抛物线Y=a(X-m)²+n当a<0时又∵C(m-b,n-√3b)代入自己解得一个答案当a>0时
由已知可知点C的坐标用余弦定理求∠ACB大小∠ACB=∠APB通过点A,B的坐标知道AB的长度,又知道∠P,△APB又是等腰三角形,AP=BP再对△APB用余弦定理就知道AP,BP的长度,然后就能求出
因为抛物线的对称轴是直线x=1,且经过p(3,0),根据轴对称的性质,抛物线也经过(-1,0)所以x=-1时,y=0x=-1时,y的值就是a-b+c所以a-b+c=0
顶点为P(-2,4),则可设表达式为y=a(x+2)^2+4由a(x+2)^2+4=0有解,a
连接AD交O′C于点E,∵点D由点A沿O′C翻折后得到,∴O′C垂直平分AD.C(0,-3),且△ADF∽△AEO‘∽△CO‘A∴在Rt△AO′C中,O′A=2,AC=4,∴O′C=2√5.1/2×O
(1)(y-y1)/(x-x1)=(y-y2)/(x-x2)y1^2=2px1y2^2=2px2带入,得y1/(p/2-y1^2/2p)=y2/(p/2-y2^2/2p)化简,得y1y2(y1-y2)
答:①焦点x轴上设抛物线方程:y²=2px判断焦点(p/2,0)点②设A点坐标(x1,y1),B点坐标(x2,y2)设AB斜率k线段AB垂直平分线斜率k'则:kk'=-1所:(y1-y2)/
|AB|=x1+p/2+x2+p/2=x1+x2+p(x1+x2)=9-p|AB|=√(k^2+1)|x1-x2|=3|x1-x2|=9(x1-x2)^2=9y=k(x-p/2)k^2(x^2-px+
A,B,C坐标为(-1,0)(0,-2)(3,0),D坐标(1.-2)作AD中垂线,求出中垂线方程,于原抛物线方程求解,有解就是P点我看不见图,不知哪个是A
联立抛物线y^2=2px和直线y=x-2p交点坐标分别为(x1,y1),(x2,y2)x^2-6px+4p^2=0x1*x2=4p^2,x1+x2=6py1y2=x1x2-2p(x1+x2)+4p^2