已知A,B是对称正定矩阵,且AB=BA,则B为A的逆矩阵的倍数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 07:15:20
必要性:若A,B半正定,则存在C使得B=CC^T,那么tr(AB)=tr(ACC^T)=tr(C^TAC)>=0充分性:反证法,若A不是半正定的,则至少有一个负特征值λ再问:您好,我还想弱弱地问一下t
正定则顺序主子式都大于0所以|A|≠0,|B|≠0所以|AB|=|A||B|≠0所以AB可逆所以(C)正确.再问:这样呀,那其它答案为什么不正确,或者为什么不能确定呢?
因为AB=BA所以(AB)^T=B^TA^T=BA=AB所以AB是对称矩阵.由A,B正定,存在可逆矩阵P,Q使A=P^TP,B=Q^TQ.故AB=P^TPQ^TQ而QABQ^-1=QP^TPQ^T=(
A为n阶实正定对称矩阵,==>A=PP^T(存在P可逆)B为n阶反实对称矩阵==》P^{-1}BP^{-1}^T为n阶反实对称矩阵,==》P^{-1}BP^{-1}^T的特征值都是实部为0的复数,==
OK 这个有图片 请点击看大图
亲爱的楼主:【正解】这个(D)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.祝您步步高升,新年快乐!记得点击采纳为满意答案哦,谢谢您的支持!再问:��л���
你的题目有问题啊,C用不上?A,B正定,他们的差不一定对称啊.比如A=(101;210)B=(100,4;1,101)
1.A'记作A的转置A'=(P'BP)'=P'B'PB为m阶对称正定阵,即B'=B所以A'=P'BP=A,即A是对称的.2.r维非零向量x,x'Ax=x'(P'BP)x=(Px)'B(Px)因为R(P
前两天看你问过,一个人答了,估计没看懂,我也没看懂,我就用比较浅显的知识给你证明吧,高深的我也不会.哈哈!
再问:谢谢啊!!网上的我都看不懂,看懂了你教的了。
必要性:adj(A)=A^{-1}/det(A)因此adj(A)正定充分性的反例:A=-1000-1000-1adj(A)=-A
答案是肯定的.而且我认为问题没有那么复杂.B是正定矩阵,则存在可逆矩阵T,使得B=TT’.(右上角一撇代表转置,下同)A与B合同,则存在可逆矩阵P,使得A=PBP’.令Z=PT.显然Z为可逆矩阵,且A
A,B是对称的,可交换的故他们可同时对角化.且AB可与其同时对角化.A,B是半正定的,对角化后对角线上的结果是非负的.故AB对角化后的结果对角线上非负.故AB是半正定的.另外对称是显然的.再问:为什么
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
这个(C)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.
若A正定,则存在正交矩阵T,A=T^(-1)PT.其中P=diag(a1,…an)为A的标准型,ai>0.记Q=diag(√a1,…√an),取B=T^(-1)QT即可!若A=B^2,B实对称,类似上
先对B做Cholesky分解B=L*L^T,然后对L^{-1}AL^{-T}做谱分解L^{-1}AL^{-T}=QDQ^T,S=LQ即可.
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值
取可逆阵C使得A=CC^T,那么A-B正定等价于I-C^{-1}BC^{-T}正定,再分析后者的特征值即可.更省事的做法是B^{-1}-A^{-1}=A^{-1}(A-B)A^{-1}+A^{-1}(
证明B是m阶实对称矩阵,则B特征值均为正式实数,且对任意m维向量x,0b1x'x-(b1/am)×amx'x>0,故B-HAH'成为正定矩阵.