已知A,B两个矩阵合同如何求可逆阵C
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:46:01
你记错性质了,B表示A与B相似,相似矩阵有相同的特征值.经济数学团队帮你解答,请及时评价.再问:老师,你的|λI-B|等式的第二步P^-1(λI-A)P与上一步怎么觉得不相等啊。。再问:再答:再问:懂
我用上标^H表示矩阵的共轭转置.(1)由于A半正定,所以存在酉矩阵U,使得(U^H)(A)(U)=D其中D为对角阵,D=diag(x1,x2,...,xn).对角线元素为x1,x2,...,xn,全部
for(i=0;i再问:再问:结果不应该是64么?求帮助再答:好吧,我看错了。是(i=0;i(j=0;j要先行后列再问:我试了结果还是32啊再问:我试了,结果还是32,这是怎么回事啊
你可以先看一下这里关于矩阵合同的定义,首先两个矩阵如果合同的话,一定都是实对称的矩阵,而选项C和D的矩阵都不是实对称的然后两个合同的矩阵一定具有相同的特征值,因此主对角线元素之和是相等的,矩阵A主对角
一楼乱来.二楼基本正确.仅考虑实对称矩阵之间的合同关系,正交相似是充分条件(普通的相似会破坏对称性).如果不知道怎么判断惯性指数的话,那就把两个同时化合同标准型(标准型就是派这个用的).
构造分块矩阵AE同时,对矩阵用初等列变换(同时对上半块用相应的初等行变换)把上半块化为B最后化为BP则P即为所求.再问:对整个分块矩阵做初等列变换,而只对上半块做相应的初等行变换是吧?如果是这样的话,
小问题1似乎是特征分解.[V,D]=eig(K);这样就可以得矩阵V和对角阵D,满足K*V=V*D再问:恩。。这样特征值对角阵的确可以求出来,变化向量P怎么求了呢再答:P不就是V么。。。。V是单位正交
合同关系是等价关系.A,B合同,B合同与规范型diag(1,...1,-1,...,-1,0,...,0)故A也合同与diag(1,...1,-1,...,-1,0,...,0)所以A,B的正负惯性指
就是求BX=0的方程组的所有的解.若B为方阵,此即为求B的对应于0的特征向量.程序:[V,D]=eig(B);D对角线上的元素为B的特征值,V的第i列元素为D的对角线上的第i个值所对应的特征向量.找到
显然不成立比如1203和1003相似但不合同
显然,同时左乘一个b的逆矩阵就行了,所以:c=inv(b)*a
令AB=CA^(-1)=B*C^(-1)C^(-1)=(1,-1,0;0,1,0;0,0,1)接下来自己算一下吧^_^
答案是肯定的.而且我认为问题没有那么复杂.B是正定矩阵,则存在可逆矩阵T,使得B=TT’.(右上角一撇代表转置,下同)A与B合同,则存在可逆矩阵P,使得A=PBP’.令Z=PT.显然Z为可逆矩阵,且A
首先,要求合同矩阵的话大前提是对称矩阵,因为一般的矩阵不一定可以对角化,否则若当标准型就没用了.其次,你说的做法是可以的,求出来的矩阵是对角矩阵,而且T是正交矩阵,或者你也可以把A与E放在一起,A上E
这个没有很好用的充分必要条件,只能用定义或简单结论因为合同必等价,所以若两个矩阵的秩不相同,则它们不是合同的若存在可逆矩阵C,使得C'AC=B,则A与B合同,这是从定义的角度考虑.若给两个显式矩阵,判
如果给定两个具体的n阶方阵A和B,A和B相似的充要条件是λ-矩阵λI-A和λI-B相抵,这个只要对λ-矩阵做初等变换就可以判定如果给定两个具体的n阶实对称矩阵A和B,要判定是否合同只要把它们都化到合同
如果只是想使A*B=0,取B=0即可.这题问得深入点,可以问,如果A是n*n阵.r(A)可以这么做.因为r(A)
//#includevoidAnd(inta[][256],intb[][256],intn,intm){inti,j;printf("两矩阵相加为:\n");for(i=0;i