已知a aij 为n阶矩阵 写出A²的弟k行第l列的元素
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 04:11:17
由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..
因为AB=BA所以(AB)^T=B^TA^T=BA=AB所以AB是对称矩阵.由A,B正定,存在可逆矩阵P,Q使A=P^TP,B=Q^TQ.故AB=P^TPQ^TQ而QABQ^-1=QP^TPQ^T=(
∵A(A-B)=A²-AB=E.∴A可逆,且A^(-1)=A-B,即有B=A-A^(-1).∴BA=A²-E=AB,则AB-BA+A=A.又∵A为N阶可逆矩阵,∴r(AB-BA+A
相似矩阵有相同的特征值.所以A的特征值即B的特征值.又对角阵和上三角阵(或下三角阵)的特征值为对角元素.所以A的特征值为B的对角元素Bii
A为n阶实正定对称矩阵,==>A=PP^T(存在P可逆)B为n阶反实对称矩阵==》P^{-1}BP^{-1}^T为n阶反实对称矩阵,==》P^{-1}BP^{-1}^T的特征值都是实部为0的复数,==
证明(1)AB=0则B的列向量是方程AX=0的解而又有r(A)=n则有AX=0有n个未知数,有n个约束条件则AX=0只有零解则B=0(2)AB=A则有A(B-E)=0同1可知,B-E为零矩阵则B为单位
肯定是设x为A的属于特征值i的特征向量,那么Ax=ix从而AAx=Aix也就是A^2x=i(Ax)=i^2x从而i^2x=0,也就是i^2=0从而i=0由于i是A的任意一个特征值,所以A的全部特征值全
设B=(a1,a2,a3,……),因为AB=O,所以Aa1=0,Aa2=0,……因为A列满秩,所以方程Aan=0仅有零解,即an=O,所以B=O用类似的方法可以证明第二个
小问题1似乎是特征分解.[V,D]=eig(K);这样就可以得矩阵V和对角阵D,满足K*V=V*D再问:恩。。这样特征值对角阵的确可以求出来,变化向量P怎么求了呢再答:P不就是V么。。。。V是单位正交
对非零列向量xBx是一个列向量则(Bx)'(Bx)>=0[这里要求B是实矩阵--线性代数默认]这是内积的非负性(一个性质),原因:设Bx=(a1,...,an)'则(Bx)'(Bx)=a1^2+...
容易验证:(A^-1)(A+B)(B^-1)=B^-1+A^-1.**由于可逆阵的逆阵可逆,可逆阵的乘积可逆,由上式知:A^-1+B^-1可逆.再由性质:(AB)^-1=(B^-1)(A^-1)由(*
再问:谢谢啊!!网上的我都看不懂,看懂了你教的了。
|A|=m,|2|A|A^t|=|2mA^t|,因A为n阶,则|2mA^t|=(2m)^n|A^t|,又|A^t|=|A|=m,|2mA^t|=(2m)^n|A^t|=(2m)^(n+1)/2再问:貌
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
大家都不帮你我来帮你因为AA*=|A|E,两边同时乘A逆,有A*=|A|A逆,两边同时取行列式,有|A*|=||A|A逆|=|A|^(N)|A逆|又因为|A逆|=|A|分之一(这个就不用给你推了吧.A
1.证明:(1)因为AB=0,所以B的列向量都是AX=0的解[看到AB=0就要联想到这个结论]而由已知r(A)=n,所以AX=0只有零解所以B的列向量都是零向量,故B-0.(2)由AB=A,所以A(B
PQ=A+aa^Ta+ba-a^TA*A+|A|a^T-a^TA*a+|A|b=A+aa^Ta+ba-|A|a^T+|A|a^T-a^TA*a+|A|b=A+aa^T(b+1)a0-a^TA*a+|A
(A-2E)(A+E)=A^2-A-2E而A^2=A,所以(A-2E)(A+E)=-2E即(A-2E)(-A/2-E/2)=E这样就可以由逆矩阵的定义知道,A-2E的逆矩阵为-A/2-E/2即(A-2
A*是A的伴随矩阵教材中有