已知:正方形ABCD中,EF垂直GH,求EF=GH
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:46:18
由题意:四边形BFPE是矩形,所以其两对角线PB=EF∵正方形ABCD的两顶点B、D是关于其对角线AC成对称,所以PB=PD∴EF=PD
V﹙ABCDEF﹚=V﹙D-AGFE﹚+V﹙F-GBCD=1.5×2×3/3+﹙3/4﹚×3×2/3=7.5希望采纳哦!
证明:将GH沿BA方向平移,使G与A重合,将EF沿AD方向平移,使E与D重合,则GH=AN,EF=DM,∵EF⊥GH,∴GH⊥AN,即∠4=90°,∴∠1+∠3=90°,∵四边形ABCD是正方形,∴∠
证明:在CB的延长线上取点G,使BG=DF,连接AG∵正方形ABCD∴AB=AD,∠D=∠ABG=∠BAD=90∴∠BAE+∠DAF=∠BAD-∠EAF∵∠EAF=45∴∠BAE+∠DAF=45∵BG
作ER⊥AD FS⊥BC则ER=FS=√3/2 RS∥AB∥EF ERSF是等腰梯形,作RG⊥EF SH⊥EF&
EF=BF,EG=DG,四边形efcg的周长=EF+FC+CG+EG=BF+FC+CG+DG=BC+CD=正方形ABCD的周长的一半=30/2=15再问:为什么EF等于EG再答:EF=BF,没说EF=
AC,BD交于O,ABCD是正方形,所以AB=BC=CD=DA,AO=0C=(1/2)AC=5CM,角ABC=角BCD=90,角BCA=角CBD=45,所以角BOC=180-45-45=90,所以BD
已知在正方形ABCD中,AE=EB,AF=1/4AD,求证CE⊥EF(原结论不对)证明:设AF=x,则AD=CD=BC=AB=4x,FD=3x,AE=EB=2x. 以下有两种证明方法.证明方
(1)证明:∵BE=DF,BC=CD,∠EBC=∠CDF,∴△CEB≌△CFD,∴CE=CF;(2)证明连接AG,CG在Rt△EAF中,∵G是斜边EF的中点,∴AG=GE=GF,又∵△EBC≌△FDC
显而易见矩形ABCD四个角都是直角,BE平分∠ABC,得到两个角都是45°所以三角形ABE就是等腰直角三角形,所以AE=AB然后EF⊥BC,ABFE四个角又都是直角,而且邻边相等所以是正方形得证
解题思路:利用正方形的性质和旋转的性质求证。解题过程:过程请见附件。最终答案:略
解题思路:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证
从题目的条件,体积是确定的﹙祖衡定理﹚.可以在正方体中作这个图形. V﹙ABCDEF﹚=V﹙D-AGFE﹚+V﹙F-GBCD)=1.5×2×3/3+﹙3/4﹚×3
简单写一下哈:(1)∵ABCD是正方形,M、N是AB、CD中点∴MN∥BC∵MB=2=EF,EF∥AB∴BFEM是平行四边形∴ME∥BF∵MN∩ME=平面MNE,BC∩BF=平面BCF∴平面MNE∥平
取BE中点G,DF中点H,EF中点M连接GM,MH,GH∴MH//=1/2DE,MG//=1/2BF∴异面直线BF,DE所成角是∠GMH的补角设原正方形边长=4∴BF=DE=2√5∴MH=GM=√5∵
过点G向AD做垂线,交AD于M;过点E向DC做垂线,交DC于N:EF垂直于GH,AD垂直于DC,则角AHG=角DFE;角GMH=角ENF=90°,角MGH=角NEFEN=GM;三角形MHG全等于三角形
看不清图再问:再答:再问:EF//AB再答:��再答:再答:��������
延长CE,DA证直角三角形的中线等于斜边的一半
延长BC至H,使得CH=AE,连接DH在三角形DCH和三角形DAE中,可以证明这两三角形全等,则:∠HDC=∠ADE----------------------------(1)DE=DH------
过点F做平行于平面EAD的截面,多面体被分为一个三棱柱和一个四棱锥两部分,其中三棱柱的体积等于棱长乘以垂直于棱的截面面积,所以V(三棱柱)=1/2*3/2*2*3=9/2V(四棱锥)=1/3*2*3*