已知:如图1,在RT三角形ABC和RT三角形ABC中,AB=AB,,AC=AC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:24:33
因为等腰RT三角形ABC中,AB=1,∠A=90°,∠C=45度故:AC=AB=1,∠ABE+∠AEB=90度因为点E为腰AC的中点,故:AE=EC=1/2AC=1/2因为EF⊥BE故:∠CEF+∠A
S=AC*BC*0.5=3CD=3÷2.5=1.2这是一个很简单的三角形题目题中有一个很特殊的角是角ACB这是一个直角直角三角形有很多特性
(1)AC=4,(2)EG=4
证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A
因为CD⊥AB所以∠CDB=Rt∠所以∠ACB=∠CBD又因为∠∠B=B所以△ABC相似于△CBD(本题于∠A=30°无关)
∵ED是线段AB的垂直平分线∴BE=AE∴∠A=∠ABE∵∠C=90°∴∠A+∠ABC=90°∵∠1=1/3∠ABC∠1+∠ABE=∠ABC1/3∠ABC+∠A=∠ABC2/3∠ABC=∠A∴∠ABC
证明:AD平分∠BAC,则∠CAD=∠DAB=(∠CAB)/2AD=BD,在三角形ADB中,则:∠DAB=∠B所以∠B=(∠CAB)/2因为∠C=90°,所以:∠B+∠CAB=90°,所以3∠B=90
用角角边.因为角A加角ACD等于九十度角A加角B等于九十度所以角ACD等于B又因为角A等于角A且AC等于AC所以根据定理可得相似证明完毕.自己在写点步骤吧连贯一下.
解题思路:(1)连接DH、CI,过点O作OM⊥AG,垂足为点M,EM=FM,再证出GD∥AC∥OM,根据OD=OC,得出GM=AM,即可证出AF=GE,(2)先证出四边形AGDH是矩形,求出AG、EF
过C作CD⊥AB,D为垂足∵MN⊥AB∴CD//MN∴∠DCN=∠N∵CN平分∠ACB∴∠ACM+∠MCN=∠ACN=∠BCN=∠DCN+∠BCD∵CM是斜边AB上的中线∴AM=BM=CM∴∠A=∠A
ight-angledtriangle的缩写直角三角形又AB=AC则角A为直角为90°则剩余两个角都为45°则角ABC=45°
半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π
求证啥东西?麻烦采纳,谢谢!
(1)在三角形ACB与三角形BDA中AC=BD角CAB=角DBAAB=BA所以三角形ACB全等于三角形BDA.(SAS)所以角ABC=角DAB.因为角CAB=角CAD+角DAB角DBA=角DBE+角E
连结AM.因为FD垂直于AB,易得三角形BFD是等腰直角三角形.所以FD=BF.四边形AEDF是平行四边形,这个很容易证吧.我不详细讲了哈.所以,AE=FD=BF.因为M是BC中点,所以角MAC为45
(1)由已知得DECF是矩形,故EC=DF=y,AE=8-EC=8-y;(2)∵DE∥BC∴△ADE∽△ABC∴∴即y=8-2x(0<x<4);(3)S=xy=x(8-2x)=-2(x-2
∠CAD=∠BAC,∠ADC=∠ACB=90°所以△ADC相似△ACB再问:是∠CAD=∠ABC吧。对应角。哦还有当时没学两个三角形相似的判定。这题是在介绍引入相似三角形概念那里的练习题。所以应该是让
①证明:∵AB⊥DE(已知)∴∠ABC+∠BDE=90°(直角三角形的锐角和等于90度)∵∠C=90°(已知)∴∠ABC+∠A=90°(直角三角形的锐角和等于90度)∴∠A=∠BDE(等量公理)∵∠D
求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的