1. 如图,弧AB是⊙O的弧,作图,四等分弧AB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:01:22
1. 如图,弧AB是⊙O的弧,作图,四等分弧AB
如图,P是圆O外一点,PA,PB分别与圆O相切于点A,B,点C是弧AB上一点,经过点C作圆O的切线,分别与PA,PB相交

 (1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等;      OC=OA, OD=OD;三角

(2012•成都)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于

证明1)连接BG因为:角ABG=角AGE角BAG+角ABG=90度角AKH+角BAG=90度所以:角ABG=角AKH所以:角AGE=角AKH所以:角EKG=角AGE所以:KE=GE;2)连接GD因为:

如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连接AD、

(1)证明:∵在△ABC中,AB=AC,∴∠ABC=∠C.∵DE∥BC,∴∠ABC=∠E,∴∠E=∠C,又∵∠ADB=∠C,∴∠ADB=∠E;(2)当点D是弧BC的中点时,DE是⊙O的切线(如图1).

如图,AB是圆O的直径,CB是圆O的弦,D是弧AC的中点,过D点作直线与BC垂直,交BC延长线于E点,且BA交延长线于F

1)因为D是圆弧AC的中点,所以AC垂直于DO;因为AB是直径,且C是圆上一点,所以三角形ACB是直角三角形,角ACB=90°,所以AC垂直于BC;所以DO//BC;因为DE垂直于BC,所以DE垂直于

如图,OC是⊙O的半径,以C为圆心,OC长为半径作弧,交⊙O于A,B两点.求弧AB的度数

/>连接OA,OB∵OA=OC,CA=CO∴AC=AO=OC∴△AOC是等边三角形∴∠AOC=60°同理可得∠BOC=60°∴∠AOB=120°∴弧AB的度数为120°

如图,已知P是圆O外一点,PA,PB分别切圆O于A,B,PA=PB=4,C是弧AB上任意一点,过C作圆O的切线分别交PA

∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8

如图,弧AB所在圆的圆心是点O,过O作OC⊥AB于点D,若CD=4cm,弦AB=16cm,求此圆的半径.

由已知条件可得AD=DB=8设圆的半径为x在RT△ADO中OA=x,DO=x-4,AD=88²+(x-4)²=x²64+(x²-8x+16)=x²80

如图,AB是圆O的直径,点P是弧AB的中点

先自己画个图,标准点,再看题目

如图,AB是⊙O的直径,BC为弦,∠ABC=30°.过圆心O作OD⊥BC,交弧BC于点D,连接DC

直角梯形∵AB是⊙O的直径,BC为弦∴∠C就是直角∵过圆心O作OD⊥BC交BC于点D∴∠ODB也是直角∴AC∥OD∵AB≠BC∴AO≠DC∴ACDO是直角梯形再问:为什么AB≠BCAO≠DC再答:AC

如图,已知Rt三角形ABC内接于圆o,AC是圆o直径,D是弧AB的中点,过D作BC的垂线,

解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.

如图 点o是直线ab上的一点,过点O作射线OC.

(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=12∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当

如图,AB是⊙O的直径,过点A作AC交⊙O于点D,且AD=CD,连接BC,过点D作⊙O的切线交BC于点E.

(1)结论:DE⊥BC.理由:连接OD,∵AB是⊙O的直径,∴OA=OB.∵AD=CD,∴DO∥BC.又∵DE是⊙O的切线,∴DE⊥DO,即∠ODE=90°.∴DE⊥BC.(2)连接BD,∵AB是圆的

如图:已知正方形ABCD的边长为1,若以A为圆心,1为半径作圆,在扇形ABD内作⊙O与AD、AB、弧都相切,求⊙O的周长

连接切点F,G,连接OA,OE设半径为r易证四边形AGBF为正方形AO=根号2r=1-r(1-r就是扇形半径-OE就等于AO)r=根号2-1周长=2πr=2*(根号2-1)*π再问:画个图好么同学?再

如图,点M、N是⊙O的弦AB的三等分点,过点M、N分别作AB的垂线,交弧AB的垂线于点C、D,那么AC=CD=BD吗?

AC≠CD≠BD,理由如下:如图:连接AC,CD,BD,∵点M、N是⊙O的弦AB的三等分点,∴AM=MN=BN.∵AC>AM,MN=CD,BD>BB,∴AC>CD,BD>CD.∴AC>CD,BD>CD

如图,已知AB是⊙O的直径,BC是弦,∠ABC=30°,过圆心O作OD⊥BC交弧BC于点D,连接DC,则∠DCB的度数为

∵OD⊥BC,∠ABC=30°,∴在直角三角形OBE中,∠BOE=60°(直角三角形的两个锐角互余);又∵∠DCB=12∠DOB(同弧所对的圆周角是所对的圆心角的一半),∴∠DCB=30°;故选A.

如图,AB是⊙O的直径,C,D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于

连接BC∵CE是圆切线∴∠ECB=∠CDB=20°(弦切角=所夹弧上的圆周角)∵AB是直径∴∠ACD=90°(半圆上圆周角是直角)∵∠CDB=∠CAB=20°(同弧上圆周角相等)∴∠CBA=90°-∠

如图AB是圆o的直径,AC为弦,D是弧BC的中点,过点D作EF⊥AC,交AC的延长线于E,交AB的

(1)证明:连接OD,∵D是BC的中点,∴∠BOD=∠A,∴OD∥AC,∵EF⊥AC,∴∠E=90°,∴∠ODF=90°,即EF是⊙O的切线;在△AEF中,∵∠E=90°,sin∠F=13,AE=4,

如图,△ABC是锐角三角形,以BC为直径作⊙O,AD是⊙O的切线,从AB上一点E作AB的垂线交AC的延长线于F,若ABA

证明:如图,设AC交⊙O于点N.连接BN,∵BC为⊙O的直径,∴∠BNC=90°,∴∠BNA=90°,∵FE⊥AB,∴∠AEF=90°=∠BNA,∠BNA=∠FAE,∴△ABN∽△AFE,∴ABAF=