已知:如图,△ABC内接于圆O,过点B作圆O的切线,交CA的延长线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:00:30
证明:∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD注:明白了就可以了,别加分,免
因为AE是⊙O的直径,所以∠ABE=90°,∠BAE=90°-∠BEA因为弦AD与弦BC垂直,所以∠CAD=90°-∠ACB因为∠BEA=∠ACB所以∠BAE=∠CAD
BD切圆O于B证明:连接BO并延长BO交圆O于E,连接AE∵直径BE∴∠BAE=90∴∠BAC+∠CAE=90∵∠CBE、∠CAE所对应圆弧都为劣弧CE∴∠CBE=∠CAE∵∠CBD=∠BAC∴∠EB
关于如图,三角形ABC内接于圆O
因为角aeb=角acb因为ae直径AD为BC上的高所以角aeb=角aec=角acb所以三角形abe和adc相似所以AB/AE=AD/AC得AB·AC=AE·AD
(1)证明:因为sinB=1/2,所以角B=arcsin1/2=30度,所以角AOC=2角B=60度因为角D=30度,所以角DAO=90度,所以DA垂直于OA因为A是半径OA的外端,所以DA是切线(2
1因为∠ABC=∠ADC(同弧所对应的圆周角相等)∠CED=∠AEB(对顶角)所以△ABE与△CDE相似,根据对应边成比例得出:CD/AB=DE/BE,即CD/DE=AB/BE——式1已知DC^2=D
图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠
解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.
连A0并延长交BC于M因为;AB=AC弧AB=弧AC又因为;AO过圆心所以;AM垂直并平分BC所以;BM=CM=4又因为;直角三角形BMO所以;B0的平方+MO的平方=0B的平方设半径为X(3-x)*
(1)证明:∵AB为直径,∴∠ACB=∠ADB=90°∵BD平分∠ABC∴∠CBF=∠FBA∵∠DAF+∠AFD=90°∠CBF+∠BFC=90°∠AFD=∠BFC(对顶角相等)∴∠DAF=∠CBF=
角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8
证明:连接AD,BD因为DC平分∠ACB所以∠ACD=∠BCD所以弧AD=弧BD所以点D是弧ADB的中点连接OD,根据垂径定理OD⊥AB因为L是切线所以OD⊥L所以AB‖L(同垂直于一条直线的2条直线
(1)∵AD是∠BAC的角平分线∴∠BAD=∠DAC又△ABC和△ADC同圆共边∴∠ABC=∠ADC可知,△ABE与△BDC相似,则AB/AD=AE/AC即AB*AC=AE*AD(2)由AD是∠BAC
连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠
证明:1)连接OD因为DE与圆O相切于D所以DO⊥DE因为AD平分∠BAC所以弧BD=弧DC所以DO⊥BC(根据垂径定理)所以DE∥BC2)因为弧BD=弧DC所以DC=BD=2因为DE∥BC所以∠E=
答:BD与⊙O的关系是相切理由:作直径BE,连接CE因为BE是直径,所以∠BCE=90度所以∠EBC+∠E=90度因为∠A=∠E,∠A=∠CBD所以∠EBC+∠CBD=90度所以BE⊥BD根据“过直径
证明:(1)∵内心即角平分线的交点∴∠BAD=∠CAD,∴BD=CD【相等圆周角所对的弦相等】∠ABI=∠EBI∵∠BID=∠BAD+∠ABI∠DBI=∠DBC+∠EBI∠DBC=∠CAD=∠BAD【
没图,答案初步计算应该是25π/9.