已知2的n 2的次方 能被5整除
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:07:29
2^20-1=(2^10-1)(2^10+1)=(2^5-1)(2^5+1)(2^10+1)=31(2^5+1)(2^10+1)所以可以被31整除---------------------------
2^24-1=(2^12+1)(2^12-1)=(2^12+1)(2^6+1)(2^6-1)=(2^12+1)(2^6+1)(2^3+1)(2^3-1),所以,2^24-1能被2^3+1和2^3-1整
设商是A则(x+kx+6)=A(x+2)x=-2,右边=A(-2+2)=0所以左边也等于0所以(-2)+k(-2)+6=0k=-1
2的N次方末尾数分别为2,4,8,6循环2的2005次方末位数是22的2004次方末位数是62的2003次方末位数是8所以相减末尾都不为0或者是5,所以不能整除
3^(n+2)-3^n=3^n*3^2-3^n=3^n*(3^2-1)=8*3^n=8*3*3^(n-1)=24*3^(n-1)
原式=2的2003次方*(4+2-1)=2的2003次方*5所以原式能被5整除
(n+7)^2-(n-5)^2=(n+7+n-5)(n+7-n+5)=12(2n+2)=24(n+1)(n+7)的2次方-(n-5)的2次方能被24整除
这题的背景是费马数.费马数F5=2^2^5+1=2^32+1欧拉首先发现了它可以被641整除,从而粉碎了费马数全是素数的梦想.
再答:我的回答满意吗?再答:望采纳!
设被7n+55整除后得k,∴n2-7kn-(71+55k)=0,∵n为正整数,∴△=49k2+220k+284是完全平方数,而(7k+15)2<49k2+220k+284<(7k+17)2,∴49k2
8^5-4^6+2^11=(2^3)^5-(2^2)^6+2^11=2^15-2^12+2^11=2^11×(2^4-2^1+1)=2^11×15所以8^5-4^6+2^11能被15整除
3^N+11^M能被10整除所以3^N+11^M的个位数是0因为11^M的个位数是1所以3^N的个位数是9而3^4=81,所以3^(N+4)的个位数还是9并且11^(M+2)个位数是1所以:3^(N+
5^2×3^(2n+1)×2^n-3^n×6^(n+2)证明:5^2×3^(2n+1)×2^n-3^n×6^(n+2)=5^2×3^(2n+1)×2^n-3^n×(2×3)^(n+2)=5^2×3^(
证明:3^(n+3)+m=3^n×(3^3)+m=27×3^n+m=26×3^n+3^n+m26×3^n能被13整除,3^n+m能被13整除,所以相加能被13整除.证明完毕
2的48次方减1=(2的24次方+1)(2的24次方-1)=(2的24次方+1)(2的12次方+1)(2的12次方-1)=(2的24次方+1)(2的12次方+1)(2的6次方+1)(2的6次方-1)2
2的4次方的末位数是62的99次方的末位数=(2的4次方)的24次方×2的立方的末位数=6×8的末位数=8同理:3的99次方的末位数=(3的4次方)的24次方×3³的末位数=1×27的末位数
2004^2+2004=2004*2004+2004=2004*(2004+1)=2004*2005当然可以被2005整除
2的101次方+2的99次方=2的99次方×(2²+1)=2的99次方×5显然能被5整除
实际上解答者在(7k+15)2<49k2+220k+284<(7k+17)2这一步使用了放缩,即将49k2+220k+284经过适当的处理,使它可以用不等式和整数的连续性求出来,至于具体的这个放缩是如