已知,直线Y=-1 2X 1 与x轴,y轴分别交于点A,B,以线段AB为直角
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:59:05
对称轴为直线x=-1-b/2a=-12a=ba>0b>aa>0,对称轴为直线x=-1,与X轴的一个交点为(x1,0),009a-3b+c>0下列结论正确的是:①③.
首先,假设存在,把y=-x+2带入y=k/x,得出x^2-2x+k=0,然后由于有两个不同的交点,相当于这个方程有两个不同的根,得出k
设l:x=my+1,与抛物线方程联立消x,可得y1*y2,y1+y2,再可得x1*x2.x1+x2,向量TA·向量TB=1用x1x2y1y2表示可得m,1/m即为斜率
设f(x)=x^2+bx+c,则题中f(x)-x=x^2+bx-x+c与x轴交点的横坐标为X1、X2=x1+1,设f(x)-x=(x-x1)(x-x1-1)f(x)=(x-x1)(x-x1-1)+xy
(1)对称轴x=1,(2)方程组y=x2−2x+ay=x+1消去y,得x2-3x+a-1=0.由题意可知x1,x2是方程x2-3x+a-1=0的两个不相等的根,∴x1+x2=3,x1•x2=a-1,∵
y1=KX1,y2=KX2,所以2X1Y2-7X2Y1=2K*X1*X2-7K*X1*X2=-5K*x1*X2;因为KX=4/X得到,KX^2-4=0;根据抛物线两根的特点可知X1*X2=-4/K;所
A(x1,y1),B(x2,y2)x1,x2满足直线y=kx+b与双曲线y=k÷x有交点,所以x1,x2是方程kx+b=k÷x的两根化简得kx²+bx-k=0x1x2=a/c所以x1x2=-
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
吾得闲做第2问,第一问:x1的平方+X2的平方=T的平方+2T-3=(T+3)*(T-1)>0得出T>1或T
y=(1-k^2)x-(k-2)经过点(0,-1)所以-1=(1-k^2)*0-(k-2),k=3所以直线方程是:y=-8x-1,随着x的增大而减小故y1>y2
C点x=0,则有y[1]=c;由韦达定理得:x[1]+x[2]=6b,x[1]•x[2]=-6cAM斜率:k[1]=(-(3/2)-0/0-x[1])=(3/2x[1])BC斜率:k[2]
抛物线y^2=4x的焦点坐标为(1,0),AB所在直线与y轴焦点坐标(0,2),且AB过交点,则AB的方程为y=-2x+2联立抛物线方程y^2=4x,消去x,有y^2+2y-4=0,从而y1+y2=-
1、A(-4,0)则c平方=16,B(3,0)则b平方=9a平方=25,所以椭圆的方程为x平方/25+y平方/9=12、设P的坐标为(-4,y),Q的坐标为(-4,-y)因为P的椭圆上,可求P的坐标为
依题意,作图如下:由题意可知,x1•x3=x22①,x1+x2=π②,x1+2π=x3③,由①②③得:x1•(x1+2π)=(π-x1)2,解得x1=π4,从而可得x2=3π4,x3=9π4,∴b=s
(1)-0.5x²-(m+3)x+m²-12=0x²+2(m+3)x+(24-2m²)=0△=4(m+3)²-4(24-2m²)=12m&s
联立两个方程得:ax^2-bx-c=0所以x1与x2为此方程的两个根所以1/x1+1/x2=(x1+x2)/(x1x2)=(b/a)/(-c/a)=-b/c又因为直线y=bx+c与x轴交点为(-c/b
y=-2x+bk=-2,y随x的增大而减小∵x1
由题意x3=−bk,联立抛物线y=ax2(a>0)与直线y=kx+b得ax2-kx-b=0,∴x1 +x2=ka,x1x2=−ba,∴1x1+1x2=−kb,∴x1x2=x1x3+x2x3,
y1=-3x1+3,y2=-3x2+3y1-y2=-3x1+3x2=-3(x1-x2)x1>x2x1-x2>0y1-y2<0y1<y2
D由题知K不等于0kx+b=K/xKx^2+bx=Kx^2+kx/b-1=0x1x2=-1,x1+x2=k/b所以x1x2与k、b都无关再问:请问:Kx^2+bx=K的下一步是怎样得到的?又是怎样得到