已知,如图,在三角形mpn中,h是高mq和nr的交点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:23:13
已知,如图,在三角形mpn中,h是高mq和nr的交点
如图,在△MPN中,MP=NP,∠MPN=90°,NQ⊥PQ,MS⊥PQ,垂足分别为Q、S,QS=3.5cm

设PQ交MN于A,角MSA=角AQN=90°,角MAS=QAN三角形AMS相似三角形AQN角AMS=角ANQ又角MPS=90°-角PMS=90°-(45°-角AMS)=45°+角AMS=45°+角AN

在周长为48的三角形MPN 中,∠MPN=90°,tan∠PMN=3/4,求以M,N

∵∠MPN=90°tan∠PMN=3/4∴PN=4k,PM=3k∴勾股定理得,MN=5k∵周长为48∴3k+4k+5k=48k=4∴MN=20|PM-PN|=k=4假设以MN为x轴,中点O为直角坐标系

如图,在三角形MPN中MP=NP,角MPN=90度,NQ垂直于PQ,MS垂直于PQ垂足分别为Q,S,QS=3.5cm,N

∵MS⊥PQ,MP⊥PN∴∠1+∠PMS=90°∠1+∠QPN=90°∴∠PMS=∠QPN同理:∠MPS=∠PNQ∵MP=NP∴⊿PMS≌⊿PNQ(ASA)∴PS=QN=2.1∴MS=PQ=PS+QS

已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.

这个不用网搜的.如果回答对了请不要关闭问题哟,我们打字也是很辛苦的(今天居然有人关掉了,太鄙视他了.有不懂的可以再问)其实就是证全等三角形的;因为MQ=NQ且MQ为高所以∠MQN为90°,∠QMN=4

已知,如图在△MPN中,H是高MQ和NR的交点,且PQ=HQ,求:∠QMN的度数

由条件易知角RMQ=角RNQ又在直角三角形中PQ=HQ故直角三角形PQM全等于HQNQM=QN故角QMN=QNM=45°

已知:如图,在三角形MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM

证明:∵MQ⊥PN,NR⊥MP∴∠MQN=∠MQP=∠NRP=90∴∠PMQ+∠P=90,∠PNR+∠P=90∴∠PMQ=∠PNR∵MQ=NQ∴△MPQ≌△NHQ(ASA)∴HN=PM再问:可是题目没

在△ABC中,P是BC边上的一点,以P为顶点作∠MPN,使得∠MPN+∠A=180°.(1)如图1,∠M1PN1和∠M2

证明要点:∠MPN+∠A=180°===>PMNA四点共圆===>∠1=α、∠2=β.(1)由于∠1=α、∠2=β,因此当P点为定点时,∠1和∠2固定不变.  &nbs

如图,在△MPN中,MP=NP,∠MPN=90°,NQ⊥PQ,MS⊥PQ,垂足分别为Q、S,QS=3.5cm,NQ=2.

∵MS⊥PQ,MP⊥PN∴∠MPS+∠PMS=90°∠MPS+∠QPN=90°∴∠PMS=∠QPN同理可证∠MPS=∠PNQ∵MP=NP∴⊿PMS≌⊿PNQ∴PS=QN=2.1∴MS=PQ=PS+QS

如图,在三角形MPN中,MP=NP,角MPN=90度,NQ垂直于PQ,MS垂直于PQ,垂足分别为Q、S,QS=3.5cm

 ∵MS⊥PQ, MP⊥PN ∴∠MPS+∠PMS=90° ∠MPS+∠QPN=90° ∴∠PMS=∠QPN 同理:∠MPS=∠PNQ&nb

如图,已知∠AOB.求作:∠MPN,使得∠MPN=2分之1∠AOB(保留作图痕迹)

画射线N以O为圆心,适当长度为半径,画圆弧,分别交OA、OB于C、D以P为圆心,同样长度为半径,画圆弧r1,交PN于E以E为圆心,CD为半径,画圆弧r2,与圆弧r1交于F以F为圆心,CD为半径,画圆弧

已知,如图,在三角形ABC中,

∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)

已知:如图,在三角形ABC中,

用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度

已知,如图,在RT三角形ABC中,

求证啥东西?麻烦采纳,谢谢!

已知:如图在Rt三角形ABC中, . 帮帮忙 ~

连结AM.因为FD垂直于AB,易得三角形BFD是等腰直角三角形.所以FD=BF.四边形AEDF是平行四边形,这个很容易证吧.我不详细讲了哈.所以,AE=FD=BF.因为M是BC中点,所以角MAC为45

如图在三角形mpn中h是高mq和nr的交点且mq=nq.求证:hn=pm

证明:∵MQ⊥PN,NR⊥MP∴∠MQN=∠MQP=∠NPR=90∴∠PMQ+∠P=90,∠PNR+∠P=90∴∠PMQ=∠PNR∵MQ=NQ∴△MPQ≌△NHQ(ASA)∴HN=PM再问:谢了!有一

已知:如图,在三角形MPN中,H是高MQ和NR的交点,旦MQ=NQ,求证:HN=PM

证明:∵MQ⊥NP,NR⊥MP∴∠PNR+∠P=∠PMQ+∠P=90°∴∠HNQ=∠PMQ∵∠NQH=∠MQP=90°,MQ=NQ∴△NHQ≌△MQP∴HN=PM

如图,在△MPN中,MP=NP,∠MPN=90°,NQ⊥PQ,MS⊥PQ,垂足分别为Q、S.

(1)∵∠MPN=90°,NQ⊥PQ,MS⊥PQ,∴∠PSM=∠Q=∠MPN=90°,∴∠SPM+∠PMS=90°,∠SPM+∠NPQ=90°,∴∠PMS=∠NPQ,在△PMS和△NPQ中∠PSM=∠

初三相似三角形如图Rt△ABC中,∠C=90°BC=6 AC=8 P是AB的中点 以P为顶点,作∠MPN=∠A∠MPN的

显然∠MPN≠90°若∠PMN=90°,则CM=4若∠PNM=90°,则PN=3,CN=4,MN=9/4,∴CM=7/4(2)(甲)CM•AN的值不确定(显然,CM可以为0,从而CM