已知,如图,在三角形mpn中,h是高mq和nr的交点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:23:13
设PQ交MN于A,角MSA=角AQN=90°,角MAS=QAN三角形AMS相似三角形AQN角AMS=角ANQ又角MPS=90°-角PMS=90°-(45°-角AMS)=45°+角AMS=45°+角AN
∵∠MPN=90°tan∠PMN=3/4∴PN=4k,PM=3k∴勾股定理得,MN=5k∵周长为48∴3k+4k+5k=48k=4∴MN=20|PM-PN|=k=4假设以MN为x轴,中点O为直角坐标系
∵MS⊥PQ,MP⊥PN∴∠1+∠PMS=90°∠1+∠QPN=90°∴∠PMS=∠QPN同理:∠MPS=∠PNQ∵MP=NP∴⊿PMS≌⊿PNQ(ASA)∴PS=QN=2.1∴MS=PQ=PS+QS
这个不用网搜的.如果回答对了请不要关闭问题哟,我们打字也是很辛苦的(今天居然有人关掉了,太鄙视他了.有不懂的可以再问)其实就是证全等三角形的;因为MQ=NQ且MQ为高所以∠MQN为90°,∠QMN=4
由条件易知角RMQ=角RNQ又在直角三角形中PQ=HQ故直角三角形PQM全等于HQNQM=QN故角QMN=QNM=45°
证明:∵MQ⊥PN,NR⊥MP∴∠MQN=∠MQP=∠NRP=90∴∠PMQ+∠P=90,∠PNR+∠P=90∴∠PMQ=∠PNR∵MQ=NQ∴△MPQ≌△NHQ(ASA)∴HN=PM再问:可是题目没
证明要点:∠MPN+∠A=180°===>PMNA四点共圆===>∠1=α、∠2=β.(1)由于∠1=α、∠2=β,因此当P点为定点时,∠1和∠2固定不变. &nbs
∵MS⊥PQ,MP⊥PN∴∠MPS+∠PMS=90°∠MPS+∠QPN=90°∴∠PMS=∠QPN同理可证∠MPS=∠PNQ∵MP=NP∴⊿PMS≌⊿PNQ∴PS=QN=2.1∴MS=PQ=PS+QS
∵MS⊥PQ, MP⊥PN ∴∠MPS+∠PMS=90° ∠MPS+∠QPN=90° ∴∠PMS=∠QPN 同理:∠MPS=∠PNQ&nb
画射线N以O为圆心,适当长度为半径,画圆弧,分别交OA、OB于C、D以P为圆心,同样长度为半径,画圆弧r1,交PN于E以E为圆心,CD为半径,画圆弧r2,与圆弧r1交于F以F为圆心,CD为半径,画圆弧
∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)
用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度
求证啥东西?麻烦采纳,谢谢!
连结AM.因为FD垂直于AB,易得三角形BFD是等腰直角三角形.所以FD=BF.四边形AEDF是平行四边形,这个很容易证吧.我不详细讲了哈.所以,AE=FD=BF.因为M是BC中点,所以角MAC为45
证明:∵MQ⊥PN,NR⊥MP∴∠MQN=∠MQP=∠NPR=90∴∠PMQ+∠P=90,∠PNR+∠P=90∴∠PMQ=∠PNR∵MQ=NQ∴△MPQ≌△NHQ(ASA)∴HN=PM再问:谢了!有一
证明:∵MQ⊥NP,NR⊥MP∴∠PNR+∠P=∠PMQ+∠P=90°∴∠HNQ=∠PMQ∵∠NQH=∠MQP=90°,MQ=NQ∴△NHQ≌△MQP∴HN=PM
(1)∵∠MPN=90°,NQ⊥PQ,MS⊥PQ,∴∠PSM=∠Q=∠MPN=90°,∴∠SPM+∠PMS=90°,∠SPM+∠NPQ=90°,∴∠PMS=∠NPQ,在△PMS和△NPQ中∠PSM=∠
显然∠MPN≠90°若∠PMN=90°,则CM=4若∠PNM=90°,则PN=3,CN=4,MN=9/4,∴CM=7/4(2)(甲)CM•AN的值不确定(显然,CM可以为0,从而CM