已知,O是四边形ABCD的对称中心,EF.GH是过点O的两条直线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:11:11
已知,O是四边形ABCD的对称中心,EF.GH是过点O的两条直线
如图,四边形ABCD是以原点O为对称中心的中心对称图形,过点O作OE⊥AC,交BC于点E,如果四边形ABCD的周长是18

因为,四边形ABCD是以原点O为对称中心的中心对称图形所以,AO=CO,BO=DO,又因为∠AOD=∠COB,所以△AOD≌△COB,所以,∠ADO=∠CBO,所以AD//BC,又因为AD=BC(△A

已知四边形ABCD的对角线AC、BD相交于点O,且AO=OC,BO=OD,求证:四边形ABCD是平行四边形

∵AO=CO∠AOB=∠CODBO=DO∴△AOB≌△COD∴∠OAB=∠OCD,AB=CD∴AB//CD∴四边形ABCD是平行四边形

已知四边形ABCD,作四边形ABCD关于点O的对称图形.

连AO并延长圭A'使OA'=OA,同样作出点B',C',D',连结A'B'C'D'即得所求对称图形.

如图,已知四边形ABCD是平行四边形,对角线AC,BD相交于点O,已知四边形ABCD的周长是48cm,而三角形COD的周

AD=10cm,AB=14cm∵△AOD的周长=AO+DO+AD△COD的周长=DO+CO+CD=DO+AO+CD由题意知AO+DO+AD+4=DO+AO+CD,AD+4=CD所以2(AD+CD)=4

已知四边形ABCD的对角线AC、BD相交于点O,且向量AO=向量OC,向量BO=向量OD,求证:四边形ABCD是平行四边

由题意,向量AO=向量OC,向量BO=向量OD,有AO=OC,BO=OD又因为角AOB=角COD,角AOD=角COB所以,三角形AOB全等于三角形COD,三角形AOD全等于三角形COB所以角CAB=角

在四边形ABCD中,AC与BD相交于点O,已知三角形ABO AOD BOC的面积分别是10 8 25 求四边形ABCD的

过A作AE⊥BD,则:S三角形ADO=1/2*OD*AE=8S三角形ABO=1/2*OB*AE=10得4OB=5OD过C作CF⊥BD,则:S三角形CBO=1/2*OB*CF=25OB*CF=50S三角

如图,已知四边形ABCD中BC边上的一点O,画四边形ABCD关于点O对称图形

连AO延长至A'使A'O=AO连DO延长至D'使D'O=DO在OB(或延长线)上截C'O=CO在OC(或延长线)上截B'O=BO顺次连结A'B'C'D'即得与原四边形ABCD关于点O的对称四边形A'B

四边形ABCD内有一点O,O点到四条边的垂线长都是4厘米,已知四边形周长是36厘米,四边形ABCD的面积是多少

连OA、OB、OC、OD,将四边形ABCD分成四个小三角形,则四边形的面积等于这四个三角形的面积之和.S=(1/2)×4×(AB+BC+CD+DA)=72(cm²)

四边形ABCD内有一点O,O点到四条边的垂线长都是4厘米,已知四边形周长是36厘米,四边形ABCD的面积是...

连接O和A、B、C、D四点,四边形ABCD的面积就是四个三角形AOB、BOC、COD、DOA的面积之和,这四个三角形以四边形边为底,以垂线为高,可就得面积.因此,四边形面积=1/2*AB*4+1/2*

(1/2)四边形ABCD内有一点O,O点到四条边的垂线长都是4厘米,已知四边形周长是36厘米,四边形ABCD的面积是..

设四边长为abcd连续O到和顶点可得四个三角形则四边形的面积等于四个三角形的面积四个三角形的面积和:1/2*4a+1/2*4b+1/2*4c+1/2*4d=2(a+b+c+d)=2*36=72平方厘米

四边形abcd内有一点o,o点到四条边垂线长都是4厘米,已知四边形周长是36厘米,四边形ABCD的面积是多少平方?

S四边形ABCD=1/2*AB*4+1/2BC*4+1/2*CD*4+1/2AD*4=1/2(AB+BC+CD+DA)*4=1/2*36*4=72平方厘米

如图,已知四边形ABCD是以O为对称点的中心对称图形,四边形BCED是以点P为对称中心的中心对称图形,EF垂直A

深夜无聊,回望初中,哈哈,来帮你看一下,顺带遗憾下没读完高中,也没上过大学的悲哀OK了,初中题还是没问题的,哈哈哈哈EF相交CD于G点由于是中心对称,所以ABCD,BCED都是平行4边行画下DH垂直A

已知如图o是平行四边形ABCD的对称中心,EF,GH是过点O的两条直线,且EF⊥GH.求证:四边形EHFG是菱形

连接AC和BD,可以证明2组全等,OE=OF,OH=OG,从而先证明四边形EHFG是平行四边形,EF⊥GH,所以四边形EHFG是菱形

已知平面内的四边形ABCD和点O,且向量OA+OC=向量OB+OD,求证四边形ABCD是平行四边形

OA-OB=OD-OC即BA=CD从而BA//CD且BA的模=CD的模即ABCD是平行四边形

如图,点O是正方形ABCD的对称中心,

解对称理由如下连接AC,∵O是正方形ABCD的对称中心∴OA=OC,AB∥CD∴∠OAH=∠OCM∵∠AOH=∠COM∴△AOH≌△COM(ASA)∴OH=OM∴△AO

已知四边形ABCD中,AB=CD,BC=DA,对角线AC、BD交于点O.M是四边形ABCD外的一

四边形ABCD是矩形.再问:具体过程再答:AB=CD,BC=DA四边形ABCD是平行四边形那么以对角线交点O为圆心,AC和BD分别为直径作园那么,符合AM⊥MC的M点必在O为圆心,AC为直径作园上符合

四边形ABCD是一个中心对称图形的一部分,试以O点为对称中心,把图形化完整.

画法:连接AO并延长到A',使OA'=OA连接BO并延长到B',使OB'=OB连接CO并延长到C',使OC'=OC连接DO并延长到D',使OD'=OD连接A‘B’,B'C',C'D',D'A'则四边形

已知正方形ABCD,M是AB中点,N是BC中点,AN与CM相交于O,那么四边形AOCD和四边形ABCD的面积之比是

如图O是△ABC的重心,OT/TB=1/3 DO/DB=﹙3+1﹚/﹙3+3﹚=2/3四边形AOCD和四边形ABCD的面积之比=DO∶DB=2∶3