已知,O是四边形ABCD的对称中心,EF.GH是过点O的两条直线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:11:11
因为,四边形ABCD是以原点O为对称中心的中心对称图形所以,AO=CO,BO=DO,又因为∠AOD=∠COB,所以△AOD≌△COB,所以,∠ADO=∠CBO,所以AD//BC,又因为AD=BC(△A
∵AO=CO∠AOB=∠CODBO=DO∴△AOB≌△COD∴∠OAB=∠OCD,AB=CD∴AB//CD∴四边形ABCD是平行四边形
连AO并延长圭A'使OA'=OA,同样作出点B',C',D',连结A'B'C'D'即得所求对称图形.
AD=10cm,AB=14cm∵△AOD的周长=AO+DO+AD△COD的周长=DO+CO+CD=DO+AO+CD由题意知AO+DO+AD+4=DO+AO+CD,AD+4=CD所以2(AD+CD)=4
由题意,向量AO=向量OC,向量BO=向量OD,有AO=OC,BO=OD又因为角AOB=角COD,角AOD=角COB所以,三角形AOB全等于三角形COD,三角形AOD全等于三角形COB所以角CAB=角
过A作AE⊥BD,则:S三角形ADO=1/2*OD*AE=8S三角形ABO=1/2*OB*AE=10得4OB=5OD过C作CF⊥BD,则:S三角形CBO=1/2*OB*CF=25OB*CF=50S三角
连AO延长至A'使A'O=AO连DO延长至D'使D'O=DO在OB(或延长线)上截C'O=CO在OC(或延长线)上截B'O=BO顺次连结A'B'C'D'即得与原四边形ABCD关于点O的对称四边形A'B
连OA、OB、OC、OD,将四边形ABCD分成四个小三角形,则四边形的面积等于这四个三角形的面积之和.S=(1/2)×4×(AB+BC+CD+DA)=72(cm²)
连接O和A、B、C、D四点,四边形ABCD的面积就是四个三角形AOB、BOC、COD、DOA的面积之和,这四个三角形以四边形边为底,以垂线为高,可就得面积.因此,四边形面积=1/2*AB*4+1/2*
设四边长为abcd连续O到和顶点可得四个三角形则四边形的面积等于四个三角形的面积四个三角形的面积和:1/2*4a+1/2*4b+1/2*4c+1/2*4d=2(a+b+c+d)=2*36=72平方厘米
S四边形ABCD=1/2*AB*4+1/2BC*4+1/2*CD*4+1/2AD*4=1/2(AB+BC+CD+DA)*4=1/2*36*4=72平方厘米
深夜无聊,回望初中,哈哈,来帮你看一下,顺带遗憾下没读完高中,也没上过大学的悲哀OK了,初中题还是没问题的,哈哈哈哈EF相交CD于G点由于是中心对称,所以ABCD,BCED都是平行4边行画下DH垂直A
连接AC和BD,可以证明2组全等,OE=OF,OH=OG,从而先证明四边形EHFG是平行四边形,EF⊥GH,所以四边形EHFG是菱形
OA-OB=OD-OC即BA=CD从而BA//CD且BA的模=CD的模即ABCD是平行四边形
解对称理由如下连接AC,∵O是正方形ABCD的对称中心∴OA=OC,AB∥CD∴∠OAH=∠OCM∵∠AOH=∠COM∴△AOH≌△COM(ASA)∴OH=OM∴△AO
四边形ABCD是矩形.再问:具体过程再答:AB=CD,BC=DA四边形ABCD是平行四边形那么以对角线交点O为圆心,AC和BD分别为直径作园那么,符合AM⊥MC的M点必在O为圆心,AC为直径作园上符合
画法:连接AO并延长到A',使OA'=OA连接BO并延长到B',使OB'=OB连接CO并延长到C',使OC'=OC连接DO并延长到D',使OD'=OD连接A‘B’,B'C',C'D',D'A'则四边形
如图O是△ABC的重心,OT/TB=1/3 DO/DB=﹙3+1﹚/﹙3+3﹚=2/3四边形AOCD和四边形ABCD的面积之比=DO∶DB=2∶3