已知(a 1)^2 (3a 4ab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:54:16
选择第二个反证法:假设a3≥b3构造函数f(x)=(x-a1)(x-a2)(x-a3),g(x)=(x-b1)(x-b2)(x-b3)记A=-(a1+a2+a3),B=a1a2+a2a3+a1a3,C
a2-√3=1+2/(a1+1)-√3=(a1+3-√3*a1-√3)/(a1+1)=((a1-√3)-√3*(a1-√3))/(a1+1)=(a1-√3)*(1-√3)/(a1+1)①假设a10,分
|B|=|a1+a2,2a2|=2|a1+a2,a2|=2|a1,a2|=2|A|=2
设b1=a1b2=(a1+a2)/2……b100=(a1+a2+…a100)/100=>a1=b1a1+a2=2b2……a1+a2+…a100=100b100=>a1=b1a2=2b2-b1……a10
证明:设:k1(a1+2a2)+k2(2a2+3a3)+k3(3a3+a1)=0整理得:(k1+k3)a1+(2k1+2k2)a2+(3k2+3k3)a3=0∵a1,a2,a3线性无关∴k1+k3=0
18再问:。。。。选项没有这个答案啊==再答:有那些答案再问:337284189再答:72睡了
当n=2时(a1+a2)/2=(2*2-1)*a2得a2=1/15当n=3时(a1+a2+a3)/3=(2*3-1)*a3得a3=1/35当n=4时(a1+a2+a3+a4)/4=(2*4-1)*a4
用反证法,假设对任意ai,aj,(j>i)不等式aj-aii)必都有aj-ai>={(1+ai)(1+aj)}/1010即1010>=(1+ai)(1+aj)/(aj-ai)(aj-ai)/((1+a
R(A1,A2,A3)=2说明这个向量组不是满秩则线性相关则存在不全为0的数k1,k2,k3k1A1+k2A2+k3A3=0.(1)若k1=0则k2A2+k3A3=0说明k2,k3线性相关而这与R(A
(B)=3,则a2,a3,a4线性无关则a2,a3无关r(A)=2则a1,a2,a3线性相关所以a1可以有a2,a3线性表示或者根据a1,a2,a3线性相关则存在不全为0的常数k1,k2,k3使得k1
如果是ax/(x-2)>1若a=0,0>1,不可能;若0
x(a1+2a2)+y(2a2+ka3)+z(3a3+a1)=0由a1+2a2,2a2+ka3,3a3+a1线性相关得x,y,z不全为0整理得(x+z)a1+(2x+2y)a2+(ky+3z)a3=0
(2a1+3a2,a2-3a3,a1+a2+a3)=(a1,a2,a3)K其中K=2013110-31因为|K|=-1≠0所以K可逆所以r(2a1+3a2,a2-3a3,a1+a2+a3)=r(a1,
因为|ai|/ai=1或-1又因为:|a1|/a1+|a2|/a2+|a3|/a3+...+|a2011|/a2011+|a2012|/a2012=1968;所以这2012组中,有22个取到-1;y=
用定义设k1(a1+a2)+k2(3a2+2a3)+k3(a1-2a2+a3)=0重新分组:a1(k1+k3)+a2(k1+3k2-2k3)+a3(2k2+k3)=0因为a1,a2,a3线性无关,所以
a1+a2+a2+a3+a3+a4+……+a99+a100+a100+a1=2(a1+a2+a3+...+a99+a100)=1+2+3+……+100=50x100+50=5050∴a1+a2+a3+
a2=a1+2a2=1+2a2得a2=-1an=a1+2a2+3a3+...+(n-2)a(n-2)+(n-1)a(n-1)a(n-1)=a1+2a2+3a3+...+(n-2)a(n-2)两式相减:
a1=0,a2=-|a1+1|=-|0+1|=-1,a3=-|a2+2|=-|-1+2|=-1,a4=-|a3+3|=-|-1+3|=-2,a5=-|a4+4|=-|-2+4|=-2,…,所以,n是奇
方法一:b1-b2+b3=0,所以向量组B线性相关方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=121-314-101|C|=0,所以秩(B)≤秩(C)<3,所以向量组B
根据已知的一系列等式得到:18×9×10+19=980;依此类推1n(n+1)(n+2)+1n+1=n+1n(n+2).故答案为:980;n+1n(n+2)