已知(a 1)x-1-lnx小于等于0对任意x属于[1 2,2]恒成立

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:50:33
已知(a 1)x-1-lnx小于等于0对任意x属于[1 2,2]恒成立
已知函数f(x)=x-lnx,g(x)=lnx/x (1)求函数f(x)的单调区间

1)f(x)=x-lnx(x>0)f'(x)=1-1/x=(x-1)/x∴00∴f(x)递增区间为(1,+∞),递减区间为(0,1)2)由1)知,x∈(0,e]时,f(x)min=f(1)=1g(x)

已知函数f(x)=x-lnx,g(x)=lnx/x,求证f(x)>g(x)+1/2

显然定义域为x>0f'(x)=1-1/x=(x-1)/x

已知函数f(x)=lnx+ax+(a+1)/x

解题思路:)当a>-1/2时,讨论函数单调性2)当a=1时,若关于x的不等式f(x)≥m^2-5m-3恒成立,求m的取值范解题过程:

已知函数f(x)=(x+1)lnx-x+1.

f'(x)=(x+1)/x+lnx-1xf'(x)=1+xlnxxf'(x)≤x^2+ax+1则x^2+ax-xlnx》0a》-x+lnx令g(x)=-x+lnxg'(x)=-1+1/xg'(1)=0

已知X>0 求证 lnX

两边的函数是互为反函数,只要证明e^x>x即可.f(x)=e^x-x.因为:f'(x)=e^x-1>0.所以该函数单调增,得:e^x-x>e^0-0>0.即:e^x>x

已知集合A={x|1小于x小于3},

画个数轴看看就明白了a≥3

已知函数f(x)=(1-x)/(ax) + lnx.

这样的题要利用第一问的结果a=1,f(x)=(1-x)/x+lnx对大于1的正整数n有n/(n-1)>1,函数在[1,+∞)上为增函数f(n/(n-1))=ln(n/(n-1))-1/n而f(1)=0

已知函数f(X9)=lnx-x+1(x[1,+无穷大)),数列{an}满足a1=e,(a(n+1))/an=e 1求数.

1(a(n+1)/an=e所以an为等比数列an=a1*d^(n-1)=e*e^(n-1)=e^n2f(a1)+f(a2)+f(a3)+...+f(an)=(1-e+1)+(2-e²+1)+

已知函数f(x)=lnx-x,数列an满足a1=1/2,an+1=1/(2-an) ⑴求证f(x)

再问:你想要多少分....再问:全给你.....再问:大神...再答:谢谢,这些分足够了!以后有好的数学问题,可以直接向我提问。再问:太感谢..再答:不客气哈

已知函数f(x)=1/2x^2+lnx

首先函数的定义域为(0,正无穷)然后求导,f(x)的导数=x+1/x=(x^2+1)/x大于0恒成立,所以函数f(x)在定义域内单调递增.(2)设g(x)=1/2x^2+lnx-2/3x^3,只需要证

已知函数f(x)=-x^2+ax+1-lnx

/>1)f'(x)=2x+a-1/xf"(x)=2+1/x^2>0函数存在最小值.最小值在x=1/2的右边:f(x)在(0,1/2)上是减函数f'(x)=2x+a-1/x=0,x>=1/2a=1/x-

已知函数f(x)=1/2x²+lnx

令h(x)=g(x)-f(x)=2/3x³-1/2x²-lnxh(1)=2/3-1/2=1/6>0表明在x=1处,g(x)的图像在f(x)的上方.dh/dx=2x²-x-

已知x>0,证明:lnX

证明:【1】当0<x<1时,易知,一方面,lnx<ln1=0.即lnx≤0.而此时1<e^xe.∴当0<x<1时,有lnx<e^x.【2】当x≥1时,构造函数f(x)=(e^x)-lnx.(x≥1).

已知x>0,证明lnx

首先应该能看出Y=lnX和Y=e^x是反函数也就是说它们关于Y=X对称然后把它们的图象画出来然而,对于Y=e^x,它在x>0时y均大于X也就是说Y=e^x与Y=x没有交点证得在x>0时,命题恒成立

已知函数f(x)=lnx+1x−1

(1)由x+1x−1>0,解得x<-1或x>1,∴定义域为(-∞,-1)∪(1,+∞)(2分)当x∈(-∞,-1)∪(1,+∞)时,f(−x)=ln−x+1−x−1=lnx−1x+1=ln(x+1x−

已知函数f(x)=lnx+1x

f′(x)=1x-1x2+a,∵f(x)在[2,+∞)上为减函数,∴x∈[2,+∞)时,f′(x)=1x-1x2+a≤0恒成立.即a≤1x2-1x恒成立.设y=1x2-1x,t=1x∈(0,12]y=