已知 如图 在△ABC中 AB=AC D为BC的中点 四边形 BDE是平行四边形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:31:03
已知 如图 在△ABC中 AB=AC D为BC的中点 四边形 BDE是平行四边形
如图,已知:在△ABC中,AB=AC,∠DBC=∠DCB.求证:AD平分∠BAC

证明:∵∠DBC=∠DCB∴DB=DC∵AB=AC,AD=AD∴△ABD≌△ACD(SSS)∴∠BAD=∠CAD即AD平分∠BAC

已知:如图,在△ABC中,AB=AC,∠BAC=120°,点D,E在BC上,AD⊥AB,AE⊥AC

∵AB=AC∠BAC=120°∴∠B=∠C=30°又∵BD=AD∴∠B=∠BAD=30°∴∠ADE=60°又∵AE=CE∴∠C=∠EAD=30°∴∠DEA=60°=∠AED∴△ADE是等腰三角形

如图,已知△ABC中,AB=5,BC=3,AC=4,PQ⊥AB,P在AC边上,Q在AB边上.

⑴设AP=x,则3×4/4=(3x/4)×x/2,得到x=2√2.当AP为2√2时,S四边形BCPQ=S⊿APQ.⑵AD(高)=3×4/5=2.4,(2.4-3x/4)/2.4=(3x/4)/5,x=

如图,在等腰三角形ABC 中,AB=AC,

腰长:10底:1还不知道,百度HiM我

已知:如图,在△ABC中,AB=AC,∠BAC=α,且60°

因为AB=ACPC=AC∴角PAC=角PCA所以∠APC=30°+1/2a

已知如图,在△ABC中,BD=CE,DF=EF,求证:AB=AC.

证明:如图,过点D作DH∥AC交BC于H,则∠E=∠HDF,在△DFH和△EFC中,∠E=∠HDFDF=EF∠DFH=∠EFC,∴△DFH≌△EFC(ASA),∴DH=CE,∵BD=CE,∴BD=DH

如图,已知:在△ABC中,AB=AC.∠DBC=∠DCB.求证:AD平分∠BAC

证明:因为AB=AC所以∠abc=∠acb因为∠DBC=∠DCB所以.bd=cd在三角形abd和三角形acd中AB=ACbd=cdad=ad所以全等∠bad=∠cadAD平分∠BAC

已知如图在△ABC中,AB>AC,∠1=∠2.求证AB-AC>DB-DC

图中的P点应为D点.证明:在AB上取一点E,使得AE=AC,连接ED.   很容易证明△AED全等△ACD   所以有AB-AE=BE,DE=DC   在△BDE中:BE>BD-DE(两边之差小于第三

如图,已知在△ABC中,AD平分∠BAC,求证DB/DC=AB/AC

证明:作DE⊥AB于E,DF⊥AC于F;并设△ABC的边BC上的高为ha;∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F;∴DE=DF∴S△ABD∶S△ACD=(½AB·DE)∶(

如图,已知在△ABC中,AB=AC,∠A=40°,∠ABC的平分线BD交AC于D.

∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°-40°)÷2=70°,又∵BD为∠ABC的平分线,∴∠ABD=∠CDB=35°,∴∠ADB=180°-(40°+35°)=105°.故∠ADB

如图在等腰三角形abc中AB=AC

∵AB=ACAD=BD∴∠B=∠C=∠BAD∵△ADE是等边三角形∴∠DAC=60°∵∠B+∠BAD+∠DAC+∠C=180°∴3∠C+60°=180°∠C=40°∵∠DEC=180°-60°=120

如图,在三角形ABC中AB=AC

解1:因AB是员直径,所以角ADB=90,即AD垂直于BC.因AB=AC,且AD垂直BC,AO=DO,所以角CAD=角BAD=角ADO.因AC垂直EF,因此角CAD+角ADE=角AED=90又因CAD

如图11,已知:在△ABC中,AB=AC,周长为16cm,AC边上的中线BD把△ABC分成周长的差为

设AD=x,BC=y那么2x-y=24x+y=16或y-2x=24x+y=16解得x=3,y=4或x=7/3,y=20/3所以AB=AC=6,BC=4或AB=AC=14/3,BC=20/3

已知:如图,在△ABC中,AB=AC,BD、CE是高 求证:BD=CE

证明:△ABD和△ACE中∠ADB=∠AEC∠A=∠AAB=AC△ABD≌△ACE(AAS)BD=CE

如图.在△ABC中,AB=AC,

10°设∠B度数为X,AB=AC.∠C也为X∠DAE=180-2X-20因为AD=AE,∠AED=(180-∠DAE)/2=X+10∠AED是三角形ECD的外角,∠AED=∠CDE+∠C即∠CDE+X

已知:如图,在△ABC中,AB=AC=9,BC=6.

(1)作AE⊥BC交BC于点E,∵AB=AC,∴BE=EC=3,在Rt△AEC中,AE=92−32=62,∴Sin∠C=AEAC=629=223;(2)在Rt△BDC中,Sin∠C=BDBC,即BD6

如图,在三角形ABC中,AB=AC,

因为AB=AC,角A=36度所以角ABC=角ACB=72度因为CD平分角ACB所以角BCD=角DCA=36度因为角A=36度所以角BCD=角A因为角DBC=角ABC所以三角形CDB相似于三角形ABC所

已知,如图,在△ABC中,AB=AC,AD=AE.求证:BD=CE.

(1)证明全等有误SSA;      (2)反例:如图△ABD与△ABC,∠A=∠A,AB=AB,BD=BC,但是两个三角形很明显不全等.&

已知如图,在△ABC中,AB=AC,延长AB至D使BD=AB,E为AB的中点,求证CD=2CE

取CD中点F,连接BF,BF就为三角形ABC的中位线,即2BF=AC,又因为2BE=AB,AB=AC,因此,BE=BF,BF//AC,则角CBF=角BCA,又因为等腰三角形ABC,则角ABC=角BCA