已知 如图 EFGH分别是正方形abcd各边的中点 AF BG CH DE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:27:09
四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以菱形
额,赶不上节奏啊再问:楼上的看不懂,团长你能复述一遍吗?再答:GH是三角形DAC的中位线,所以GH=AC/2同理,EF是三角形BAC的中位线,所以EF=AC/2因此GH=EFEH是三角形ABD的中位线
设边长=1,AE=BF=CG=DH=1/3ED=√10/3小正方形边长=√10/3-1/√10-1/3√10=√10/5小正方形面积=10/25=2/5阴影部分的面积与正方形ABCD的面积之比为=2/
连接AC、BDH、G分别是AD、CD的中点,HG||ACE、F分别是AB、BC的中点,EF||AC故HG||EF同理,GF||BD,HE||BDGF||HE所以四边形EFGH是平行四边形.
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
由题意可得:AE=AH=CG=CF=13AD=13×15=5(厘米),DH=DG=BF=BE=23AD=23×15=10(厘米),所以长方形EFGH的面积是:15×15-10×10-5×5,=225-
很高兴为您解答,答案是九分之五这题不用想的很麻烦,因为都是三等分点,所以ae=三分之一af=三分之二利用割补法,总面积剪空白,即可求出答案.1-4x九分之一=九分之五
连接AD,在三角形ABD中,EF是中线所以EF平行AD且EF=AD/2同理在三角形ACD中,HG是中线HG平行AD且HG=AD/2所以EF平行HG且EF=HG所以EFGH是平行四边形
证明:∵矩形的ABCD的外角都是直角,HE,EF都是外角平分线,∴∠BAE=∠ABE=45°.∴∠E=90°.同理,∠F=∠G=90°.∴四边形EFGH为矩形.∵AD=BC,∠HAD=∠HDA=∠FB
S(平行四边形AFCH)+S(平行四边形BGDE)=S(正方形ABCD)其中上式等式左边阴影部分的面积重合了一次,则S(两个平行四边形和)-S(阴影部分)+4*S(三角形AEP)=S(正方形ABCD)
连接AH、BH、BE、CE因为AH=BH=AB=a,BE=CE=BC=a所以∠ABH=∠EBC=60度又因为角ABC=90度所以角EBH=30度所以弧EH=1\3弧AEC同理得弧EF=1\3弧EFD,
1、这个题目看起来是一个很简单的题目,其实要严格证明,却不简单.这里面有一个不太容易引起人们注意的陷阱,即多边形EFGH是四边形,也就是说要证明E、A、H在同一条直线上,H、D、G在同一条直线上,G、
如图:设大正方形边长为1,那么圆的直径也为1,则:(1×1):[1×(1÷2)÷2×2],=1:0.5,=2:1;故答案为:2:1.设大正方形边长为1,那么圆的直径也为1,根据“正方形的面积=边长×边
根号(a^2+b^2)再问:^是什么意思再答:平方
不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)
连接AC.因为E.F.G.H分别是AB,BC,CD,DA的中点所以根据中位线定理得:GH//AC,GH=1/2AC;EF//AC,EF=1/2AC即:EF//GH;且EF=GH所以四边形EFGH是平行
证明:连接BDEH是△ABD的中位线∴EH‖BD,EH=1/2BD同样FG是△BCD的中位线∴FG‖BD,FG=1/2BD所以:EH‖FG,EH=FG根据一组对边平行且相等的四边形是平行四边形得到:四
答:四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以
如图易知af平行于hc(bg上的两点分别设为m和n)又:f是bc中点由平行线分线段成比例定理得:bm=mn=1由于三角形abf相似于三角形bmf因此若设bf=x可得bm等于5分之2倍根号5所以5分之2
其实不需要提问,网页上搜就有http://zhidao.baidu.com/question/96211040.html虽说不是自己做的,但还是望采纳啊.