已知 在平面直角坐标系中点o为坐标原点,点a的坐标
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:46:28
OD=√65得OM=3.2BD=5S△DOP=(BD-BP)*OM/2S=[5-(t-18)]*3.2/2S=-1.6t+36.818≤t≤23若能满足P点(8,p)Q点(q,0)存在QP所在的直线∥
3×4-3×4×½-1×2×½-﹙1+3﹚×2×½=1
解题思路:本题考查了圆周角与圆心角,圆周角与圆外角,圆内角之间的关系;勾股定理,三角函数值等知识,难度较大,特别是第3小题,要利用圆周角与圆外角及圆内角之间的关系,才能得出结论。解题过程:第(2)题的
点(x,y)是曲线x²+y²=1上的点,(x',y')是C2上一点,则:x'=√3xy'=2y得:x=(1/√3)x'y=(1/2)y'因(x,y)在曲线x²+y
S=1/2×2×k/2=1/2,k=1,m=k/2=1/2y=1/x,1≤x≤3,1/3≤y≤1PQ=2×√x^2+1/x^2因为x^2+1/x^2≥2PQ≥4
1、t=2OP=2P坐标(0,2),D坐标(5,0)设PD方程:y=kx+b代入:b=2,5k+2=0,k=-2/5∴直线PD的函数解析式:y=-2/5x+22、找O关于CB直线的对称点O′(8,0)
没时间详细解答,给你个思路:1、除开无用条件,原题即是求一点P,P在Y=1/4*X^2上,且P到M(-3,3)的距离加上P到B(0,1)的距离最小2、假设P(x,y),PM=根号[(y-3)^2+(x
三角形AOB的底是OB=2,高为点A到X轴的距离,即是点A的纵坐标的绝对值,是4;所以,三角形AOB的面积=½×2×4=4.
欢迎你到“玩转数学8吧提问,竭诚为你提供免费详细解答!
1)a、b就是方程x2-m(m-1)x+m=0的2个根,在直线上,a+b=2=m(m-1)m=2或m=-12)与直线y=-x+2垂直,交点与原点的连线的斜率=1,A就是y=x和y=-x+2的交点(1,
(1)cosa=5/6sina=根号11//6向量OP=(5/6,根号11//6)向量PA=(11/30,-根号11/6)向量PA*向量PO=(5/6)*(11/30)+(根号11/6)*(-根号11
(1)将A(2,0)代入y=ax2-23x得,4a-43=0,解得a=3,∴抛物线的解析式为y=3x2-23x;(2)由旋转知,四边形OABC是平行四边形,∴BC∥OA,BC=AO,∵A(2,0)、C
http://zonghe.17xie.com/book/10985444/384137.html
用解析几何直线OA的方程为:y=-4x/3,即4x+3y=0线段OA=√[(-3)^2+4^2]=5点B到直线OA的距离d=|4*(-1)+3*(-2)|/√(4^2+3^2)=2故三角形AOB的面积
却是好点麻烦的啦.以AB为斜边构造直角三角形,假设这两个点都在第一象限(过点A作AH⊥x轴,作CF⊥x轴,作BG⊥x轴,作AD⊥BG,CF交AD于点E)由题意可得,AH=DG=x,AD=HG=OG-O
(2)A1(-1,1)B1(-1,3)C1(4,3)D1(4,1)(3)设t秒后与长方形面积相等此时,B1横坐标为-1+t,D1横坐标为4+t,BC延伸交纵轴于点M,CD延伸交横轴于点N,这样就可以求
(1)由题意可得A(1,1),B(7,1),D(4,6)C(10,6),因为向量OQ=a向量OA+b向量OC,所以向量OQ=(a+10b,a+6b),又因为a+b=1,所以向量OQ=(1+9b,1+5
OA=(3,1),OB=(-1,3).OC=a(3,1)+b(-1,3)=(3a-b,a+3b)由C(x,y).x=3a-b,y=a+3b,a+b=1联立,x=4a-1,y=3-2a.则2x+y-1=
x=3a-b,y=a+3