8.设二维随机变量(X,Y)的概率密度为f(x,y)4.8y(2-x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 13:29:51
fx=S(0,2)1/2dy=1EX=S(0,1)xdx=1/2EX^2=S(0,1)x^2dx=1/3DX=1/3-1/4=1/12
∫∫f(x,y)dxdy=∫kxdx(0-->1)∫dy(0--->x)=∫kx^2dx(0-->1)=k/3=1--->k=3X的边缘概率密度fX(x)=∫3xdy(0-->x)=3x^2Y的边缘概
根据定义做,密度函数在其定义域上两重积分值为1,由题意知:该密度函数在矩形区域 0<x<2, 2<y<4有值,而其他区域为零,且k为常数,则:只在0<
套公式即可.σ1^2=DX=16,σ2^2=DY=25.ρ=Cov(X,Y)/(σ1σ2)=0.6,√(1-ρ^2)=0.8.f(x,y)=(1/32π)e^{(-25/32)[x^2/16-3xy/
再问:为什么是用“1-”,而不能用整个面积去减?还有(4)的x的取值为什么是0到1而不是Y到1?我一直搞不懂这些取值是怎么定的?还有我最后一题看不懂...再答:第一个问题:整个面积的积分的概率就是等于
联合密度有问题,改为4xy就行了fX(x)=∫[0,1]4xydy=2x(0
1)c(∫(0~2)ydy)(∫(0~2)xdx)=14c=1c=1/42)一看互相不干涉取值就可以说是独立了fx=(1/4)∫(0~2)xydy=x/2(0
由性质得:F(+∞,+∞)=1,则A(B+arctanx/2)(C+arctanY/3)=A(B+π/2)(C+π/3)F(-∞,+∞)=0A(B+arctanx/2)(C+arctanY/3)=A(
注:这是2007年考研数学一第23题,楼主随便在网上搜一下“2007年数学一答案”,就可以找到答案
我遭得住你是不是把老师不知道题都弄上来了哦嘿嘿当年我们怎么没想到这么个办法呢
由联合密度函数的正则性可得:再问:错了再答:稍等接着上面,联合密度函数出来了,求联合分布函数:再问:再问一个问题哦,同一个题目,问P{2X+Y=
从所给联合密度知属于二维均匀分布,概率可用面积之比计算.x+y=1刚好是正方形区域的对角线,故P{X+Y>1}=1/2
1、由密度函数的性质∫[0--->+∞]∫[0--->+∞]Ae^(-2x-3y)dxdy=1即:A∫[0--->+∞]e^(-2x)dx∫[0--->+∞]e^(-3y)dy=1得:A[-(1/2)
你要注意我的解题过程:以后有问题可以在电脑上点击如下链接:进入我的页面后点击右边我的头像下的“向他提问”按钮即可.再问:大神那个关于y的边缘密度函数好像反了呀!!!再答:画画图看一看,应该不会啊
∫∫axydxdy=1其中积分区域0
如图再问:答案不是你那样再答:答案是不是(1-e^(-y))*x^2/2再问:对,那只是一个答案,还有一个答案再答:还有一个是1-(x+1)*e^(-x)-e^(-y)*x^2/2?
f(x,y)=xe^(-y),0