1 根号1 x的平方积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:27:15
xdx/(1-x*x)^(1/2)=-1/2*d(1-x*x)/(1-x*x)^(1/2)再问:我也是这样算的最后是负一但答案是1
∫xdx/√(1-x²)=(1/2)∫2xdx/√(1-x²)=(1/2)∫dx²/√(1-x²)=-(1/2)∫d(-x²)/√(1-x²
方法一:方法二:再问:太感谢了,真详细╮(╯▽╰)╭
∫x√(1-x^2)dx=-1/2∫√(1-x^2)d(-x^2)=-1/3(1-x^2)^(3/2)
设x=sint,dx=costdt,(以下省略积分符号)原式=[(sint)^2/cost]costdt=(sint)^2dt=(1-cos2t)/2*dt=1/2[dt-cos2tdt)=1/2t-
二分之根号2乘以arctan[(x-1)/根号(2x)]+四分之根号2乘以lnabs[(x+根号2x+1)/(x-2x+1)]+C
再问:非常感谢您的指点。
令x=tanα,则:√(1+x^2)=√[1+(tanα)^2]=1/cosα, dx=[1/(cosα)^2]dα.sinα=√{(sinα)^2/[(sinα)^2+(cosα)^2]}=√{(t
令x=asin(t)就做出来了...答案是-根号下a平方-x平方再问:能详细写下积分过程吗?谢谢。再答:换元积分,微积分里有的~
√(1-x^2)=√(1-sin^2t)=√cos^2t=cost再问:再仔细看看题再答:你就是问根号怎么约去的啊。我不是给出了吗?你的t范围是[0,π/2],直接开根号。这是一个基本公式:∫1/√(
令x=sinu,则:u=arcsinx,dx=cosudu.∫[(1+x^2)/√(1-x^2)]dx=∫{[1+(sinu)^2]/√[1-(sinu)^2]}cosudu=∫[1+(sinu)^2
既要换元,又要分部,还涉循环积分.初学者有难度.
分部积分法
F(x)=∫ydx=∫√(1-x^2)dx令x=sint,则√(1-x^2)=cost,dx=costdt,从而∫√(1-x^2)dx=∫cost^2dt=∫[(1+cos2t)/2]dt=∫(1/2
分部积分=xln(x+√(1+x^2))-∫xdln(x+√(1+x^2))=xln(x+√(1+x^2))-∫x/√(1+x^2)设x=tant注:secx正负这里省略了,要根据具体积分来判定原式=
再问:亲,你在第一步就化错了吧再答: