1 σ^2∑(Xi-X)^2服从分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:36:17
1 σ^2∑(Xi-X)^2服从分布
CPK 工序能力指数CPK 中 σs=√Σ(xi-x)2/(n-1) 其中 xi 和 x分别代表什么?

Xi是子组中X拔是子组样本平均值再问:Xi是子组中什么?再答:子组中的数据再问:子组中的数据之和还是什么呀X代表什么呀

概率论习题随机变量X服从(1,2)均匀分布,X=x时,Y服从以x为参数的指数分布,求证XY服从以1为参数的指数分布

设z=xyf(z)=f(z|x)f(x)=f(y|x)f(x)得证第二步应该是x已知为常数,所以分布密度.

设X服从参数设X服从参数为λ=1的指数分布,求Y=X^2的概率密度.

X的概率密度函数:fX(x)={e^-x,x>0{0,x0时,有FY(y)=P{X^2≤y}=P{-√y≤x≤√y}=∫(-√y→√y)fX(x)dxfY(y)=d[FY(y)]/dy=d[∫(-√y

设随机变量X服从参数为2的指数分布,证明Y=e^-2X服从U(0,1)

解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!

(X Y)服从二维正态分布N(μ1,μ2,σ21,σ22,ρ) 那么(aX+bY)服从什么?

Z应满足N(aμ1+bμ2,a^2σ21^2+b^2σ22^2+2ρabσ21σ22)概率论与数理统计的书里有相关定理的.

设随机变量序列X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,则对任意实数x

由林德贝格中心极限定理lim(n->∞)P{{(∑Xi-nμ)/[n^(1/2)*σ]}>x}=1-Φ(x).其中Φ(x)是标准正态分布的分布函数.

回归方程公式中的b=∑(xi-X)(yi-Y)/∑(xi-X)^2怎么化简成∑(xiyi-nXY)

这只是分子∑(xi-X)(yi-Y)可以化简成:∑(xiyi)-nXY如下:∑(xi-X)(yi-Y)=∑(xiyi-xiY-Xyi+XY)=∑(xiyi)-Y∑xi-X∑yi+∑XY=∑(xiyi)

设随机变量X1,X2,X3,X4,都服从正太分布n(1,1)且k[Σ(xi)-4]服从自由度为n

中括号后应该有个平方吧?k=1/4,n=1.中括号里是正态分布N(0,4),所以如果表达式是卡方分布的话,那自由度必然为1,而且修正系数k必为1/4再问:答案是对的,不过那个题中的确没有平方,可能是盗

设随机变量X和Y相互独立,X服从区间(0.2)的均匀分布,Y服从均值为1/2的指数分布 求P(Y《X)

X和Y相互独立则有fx(x)*fy(y)=f(x,y)Y服从均值为1/2的指数分布,即参数1/λ=1/2,λ=2然后就可以对联合分布P(Y

若X服从二项分布B(n,p),那么1-2X服从什么的二项分布?

若X服从二项分布B(n,p),那么Y=1-2X也服从二项分布B(n',p'),n'=1-2n,p'=p.我们知道,如果设X均值为a,方差为b,则a=np,b=npq.(q=1-p)易证,Y=1-2X的

X服从正态分布 ,为什么 (X1+X2)^2/2服从自由度为1的卡方分布 ,

依题意,X1、X2均服从标准正态分布(X1+X2)/√2服从N(0,1)相当于只有1个标准正态分布的平方,所以自由度为1的卡方分布

设随机变量X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,设x=1/n∑xp

EX=E(1/n∑xp)=1/n∑E(xp)=μDX=D(1/n∑xp)=1/n²D(∑xp)=1/n²∑D(xp)=σ²/n相关系数就是协方差和2个变量方差的积平方根的

设x1…xn为相互独立的随机变量,且每一个都服从参数为λ的指数分布,试证:(1)2λxi~χ²(

主要是利用分布函数的对立事件,Fz(Z)=F(min{X1,X2,...Xn}≤z),最小的小于等于z,我们不好确定其它变量和z的关系,采用它的对立事件=1-F(min{X1,X2,...Xn}≥z)

集合A={XI(x-2)[x(3a+1)]

我觉得应该分情况讨论喏(1)当2a=a^2+1,即a=1时,B=空集,空集是任何集合的子集,满足条件.(2)当a不等于1时,a^2+1>2a,所以可得到B=(2a,a^2+1)而对于集合A,当1当3a

设X1,X2...Xn 独立同分布的随机变量,证明X=(1/n)* ∑Xi 和∑(Xi-X)^2 相互独立.

记Y=∑(Xi-X)².X,Y一般不是相互独立的.例如n=3,X1,X2,X3都服从-1,1两点均匀分布.可以算得P(X=1)=(1/2)³=1/8.P(Y=0)=3·(1/2)&

概率统计 矩估计中1/n*∑Xi^2-X(平均值)^2=1/n*∑(Xi-X(平均值))^2,为什么?

首先直接分解可以得到,但是比较麻烦1/n*∑Xi^2这个是E(X^2)1/n*∑X(平均值)^2这个是E(X)^21/n*∑(Xi-X(平均值))^2这个是D(X)E(X^2)-E(X)^2=D(X)

设随机变量X与Y独立,X服从正态分布N(μ,σ^2 ),Y服从[-pi,pi]上的均匀分布,求Z=X+Y的密度函数

fY(y)=1/(2π),y∈[-pi,pi],其他为0FZ(z)=P{Z再问:fZ(z)=∫(-π,+π)φ((z-y-u)/σ)/(2π)dy=[Φ((z+π-u)/σ)-Φ((z-π-u)/σ)

已知 f(x)是满足下列数据表的次数最低的一个多项式,试求 f(x) xi 1 2 3 4 5 f(xi) 4 8 22

设f(N)=AN4+BN3+CN2+DN+E,代值后解5元1次方程组试过没有呢?还有更好的那我就不清楚了